Document Type : Research Paper

Authors

1 student

2 University of Tabriz

10.22034/gp.2020.10861

Abstract

Introduction
Soil erosion is a process of moving soil by water or wind - when the soil particles are detached and is one of the main forms of soil destruction around the world which restricts sustainable development of the earth resources by creating negative environmental effects (Marques et al, 2018). Every year more than 75 billion tons of soil is eroded from the earth's surface which is amounted to 134 tons per square kilometer (Sobhani, 2002,18). In Iran too nearly 2 billion tons of valuable soils are lost annually and damages resulted from soil erosion is amounted to 56 billion dollar (Gholami, 2002,20). Karst areas have their special conditions due to their special hydrological and geomorphological conditions. Alvand basin is a distinguished karset basin in the west of Kermanshah province and the problem of soil erosion has existed in this basin for long time and exerted destructive effects on the environment. It is feared that by continuing current trend and its intensification due to human activities and destruction of oak forests, this basin faces with stone desertification in addition to disturbance in karst water resources and hydraulic constructions of the basin face with problems resulted from sediment. Meanwhile no study has been conducted in the Alvand basin surface to assess soil erosion by taking in to account karst condition, then conducting this research is essential and necessary. The goal of this study is to evaluate and zone soil erosion by taking karst geomorphological condition in Alvan basin in to account.
Methods and materials
Library, descriptive-analytical, field methods as well as SMLRK model were used. Above model includes influential internal parameters (infiltration, erodibility and morphology) and external parameters (land use and rainfall erosivity). In this study above model is conducted in two modes with and without involvement of infiltration parameters. For verification of the maps error matrix of two maps were calculated. Research data includes Landsat satellite image, 10 meters DEM, geological and pedological map and rainfall data from climate stations of the region.
Results and Discussion
In the zoning map obtained from equation (5) infiltration parameter which covers karst aspects has been neglected (Fig.7). Classes with low and very low erosion constitute 44.68% of the basin area, class with moderate erosion 21.9% of the basin area and classes with high and very high erosion 33.4% of the Alvan basin area. Totally, nearly 55% of the Alvand basin area is exposed to the risk of moderate to high soil erosion. Low erosion class conforms to plains’ surface and hilly regions of the basin. These regions generally have agricultural and rangeland and semi-dense forests use.
Texture of the soil in these regions is heavy with lot of mineral materials and very deep. This karst class morphologically has low sleep and the directions are back to the sun and are less in the realm of the karst regions. Zone with moderate erosion conforms to erosive plains in the west of the basin, hilly regions and low hillsides of the zone’s mountains. The usage of these regions is usually rangeland- forest and includes parts of the karst regions of the basin. From morphological point of view, it has medium slope and soil texture is moderate with mineral materials and moderate depth. Zone with grate erosion exists both in karst and non-karst areas. These regions are usually steep and have rangeland and thin forest use with light soil texture and shallow. Karset regions are located in Sirvan, Ghalaje, Sarkesh, Deh Nooshak, Navakooh and Dalahou heights. Highly erosive zones conforms to rocky and steep regions with thin rangeland use, soil texture is light and very shallow (Fig.7B).  Low and very low erosive zones occupied 38.75% , moderate erosive zone 29.86% and high and very highly erosive zones 31.37% of the Alvan basin surface (table. 8). Land use, morphology, geomorphological, rainfall and soil condition in each of these zones is the same as erosive zones of the previous map.
Conclusion
In SMLRK model unlike most common models, karst geomorphological conditions have been involved in its sub-parameters. In this research final map of the erosion results from this model has been provided in two ways with and without involvement of the infiltration parameters. In the final maps of the soil erosion obtained from two methods, there are five erosive zones. Providing soil final erosive map for the Alvand basin using infiltration parameters causes changes in the surface of the erosive zones and their special distribution. With involvement of the infiltration parameters in modeling soil erosion of the Alvand basin, surface of low and high erosive zones in the map with five factors compared to the soil erosion maps with four factor has decreased and  surface of the very low, moderate and very high erosive zone has increased 2.04%, 7.96% and 5.98% respectively. In order to evaluate exactitude of the obtained maps their error matrix and similarity degree were calculated (Table 9). Accordingly, two maps and their classes were compared based on pixel and total sum of table diagonal is divided to total sum of the tables which expresses similarity degree of two maps. Similarity degree between two maps is 54.85% which reflects the main effect of infiltration parameter in amending result. Indeed, karst developed areas in east and north heights of the basin with involvement of infiltration parameter are located in highly erosive zone. Therefore, karst zoning results obtained from involvement of the infiltration parameter and consequently karst geomorphology have better performance and the results of this mode of model reflects more soil erosion in the area having karst geomorphology.

Keywords

Main Subjects

-        شرکت مهندسین مشاور زومار،(1383)، گزارش فیزیوگرافی منطقه مطالعاتی کلاشک، مدیریت آبخیزداری.
-        وزارت نیرو، سازمان آب منطقه ای غرب، مطالعات زمین شناسی و لرزه زمین شناسی و لرزه خیزی منطقه گیلانغرب ؛ مهندسین مشاور آب و نیرو، جلد دوم.
-       کردوانی، پرویز؛(1376)، حفاظتخاک، انتشارات دانشگاه تهران.
-        باقری سیدشکری, سجاد؛ یمانی, مجتبی؛ جعفربیگلو, منصور؛ کریمی, حاجی؛ مقیمی، ابراهیم. (1394). بررسی توسعه‌یافتگی و ویژگی‌های هیدرودینامیکی سامانه‌‌های کارستی با استفاده از تجزیه و تحلیل منحنی فرود هیدروگراف (مورد مطالعه: آبخوان‌های کارستی حوضۀ رودخانۀ الوندپژوهش­های جغرافیای طبیعی,47 (3)، صص 333-346.
-        باقری سیدشکری، سجاد؛(1394)، تاثیر ژئومورفولوژی کارست در ویژگی های کمی و کیفی آبخوان­های کارستی حوضه های قره سو و الوند در استان کرمانشاه، رساله دکتری ژئومورفولوژی، اساتید راهنما یمانی، مجتبی؛ جعفربیگلو،منصور؛ دانشکده جغرافیا، دانشگاه تهران.
-        برزو، آرش؛ ممیزی، محمدرضا ؛ نیک اندیش، عباسعلی،(1387)، مقایسة سه روشPSIAC, MPSIAC , EPM در برآورد میزان فرسایش و رسوب در حوضه چهل چشمه استان فارس، فصلنامه دانشکشاورزی ایران شماره 1، بهار 1387.
-        جباری، ایراج؛ طالب پور، داود، (1385)، ارزیابی حساسیت نواحی بالادست سد مهاباد به فرسایش با استفاده از سنجش از دور و GIS، نشریه علوم زمین، شماره 62.
-        رستمی، فرض الله؛(1387)، اصلاح مدل برآورد رسوب ام­پسیاک با به کار گیری تکنیک فازی در حوضه سد زاگرس، پایان نامه کارشناسی ارشد رشته ژئومورفولوژی، استاد رهنما، قهرودی، منیژه؛ دانشکده جغرافیا، دانشگاه خوارزمی.
-        کریمی، حاجی(1382) رفتار هیدروژئولوژیکی سفره های کارستی حوضه الوند کرمانشاه، رساله دکتری دانشکده علوم زمین، دانشگاه شیراز.
-        مقصودی، مهران.، یمانی، مجتبی.، سالاری، ممند.، 1387، برآورد فرسایش و رسوب از طریق ارزیابی متغیرهای تاثیرگذار در حوضه­ی آبخیز وزنه با استفاده از GIS ، فصلنامه جغرافیا و توسعه، شماره16، صص 119-134.
-        نیک پور، نورالله؛ فتوحی، صمد؛ نگارش، حسین؛ سیستانی، مسعود .1396مورفومتری فرسایش آبکندی و عوامل موثر بر ایجاد وگسترش آن (حوضهی دشت چم فاضل در جنوب غرب استان ایلام،) تحلیل فضایی مخاطرات محیطی، دوره 4، 1، 97-112.
-        نوری، عباسعلی.، صفاری، امیر.، کرمی، جلال.، 1397، بررسی تاثیر تغییرات پوشش و کاربری زمین در قابلیت فرسایش خاک حوضه قره سو گرگانرود، نشریه تحلیل فضایی مخاطرات محیطی، سال پنجم، شماره 1، صص 83-96.
-        یعقوب نژاد اصل، نازیلا.، فتحی، محمدحسین.، 1394، ارزیابی خطر فرسایش خاک در دامنه های شمال غرب کلان شهر تهران، اولین کنگره بین المللی زمین، فضا، انرژی پاک،
-        نادری، فتح الله.، کریمی، حاجی.، ناصری، بهروز.، 1389، پهنه بندی پتانسیل فرسایش خاک در حوزه آبخیز اسمان آباد ایلام به روش شاخص فرسایش، مجله پژوهش های آبخیزداری، شماره 4(23)، صص 51-43.
-        Cerdan, O., Le Bissonnais, Y., Couturier, A., & Saby, N. (2002). Modelling interrill erosion in small cultivated catchments. Hydrological Processes, 16(16), 3215-3226.
-        Darwich, T., Zurayk, R., 1997. Distribution and nature of Red Mediterranean soils in Lebanon along an altitudinal sequence. Catena 28, 191–202.
-        Drew, D. P. (1983). Accelerated soil erosion in a karst area: the Burren, western Ireland. Journal of Hydrology, 61(1-3), 113-124.
-        Drzewiecki, W., Wężyk, P., Pierzchalski, M., & Szafrańska, B. (2014). Quantitative and qualitative assessment of soil erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images. Pure and Applied Geophysics, 171(6), 867-895.
-        Fu, W. L., Zhang, Z. W., Zhang, H., Xia, K. S., Xie, D. T., & Ni, J. P. (2007). Study on characteristics of soil erosion on Karst Hillslope. J. Soil Water Conserv, 21, 38-41.
-        Gholami, S. H. (2003). The simulation of daily sediment yield by using distributed SWAT model in mountainous catchments (Amameh Catchments), Journal of Research and Construction, Vol.16: 28-33
-        Huang, W., Ho, H. C., Peng, Y., & Li, L. (2016). Qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China: A hazard index approach. Catena, 144, 184-193.‏
-        Kheir, R. B., Abdallah, C., & Khawlie, M. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Engineering Geology, 99(3-4), 239-254.
-        Krishnamurthy, J., Srinivas, G., Jayaraman, V., Chandrasekhar, M., 1996. Influence of rock types and structures in development of drainage network in typical hard rock terrain. ITC Journal 3 (4), 252–259.
-        Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., & Kim, K. S. (2005). GIS-based sediment assessment tool. Catena, 64(1), 61-80.‏
-        Marques M J, Bienes R, Perez-Rodriguez R, et al. 2008 Soil degradation in Central Spain due to sheet water erosion by low-intensity rainfall events Earth Surf. Proc. Land 33 (3) 414–423.
-        Oldeman, L. R. (1994). The global extent of soil degradation1 In: Greenland DJ. Szabolcs I, eds1 Soil resilience and sustainable land use1 Wallingford: CAB International, 99-1181.
-        Roose, E., 1999. Evolution historique des stratégies de lutte antiérosive. Vers la gestion conservatoire de l'eau, de la biomasse et de la fertilité des sols (GCES). Bulletin Réseau Erosion 19, 11–25.
-        Shaban, A. ,and BouKheir, R. ,and Froidefond, J. ,andKhawlie, M. , GirardM-C. ,2004. Characterization of morphometric factors of drainage system interrelated to rock infiltration: the case of the Occidental Lebanon: Caract´erisation des facteurs morphom´etriques des r´eseaux hydrographiques correspondant aux capacit´es d’RPs des roches au Liban Occidental. Zeitschrift Fur Geomorphologie،v. 48، p.1.
-        Sobhani, B. (2002). Comparison of FAO and MPSIAC methods for estimating sediment and erosion using GIS. Journal of agricultural sciences and natural resources, 8, 15-28.‏
-        Waltham, T., Bell, F., Culshaw, M., (2005), Sinkholes and Subsidence, karst and Cavernous rocks in Engineering and Construction Published by Springer: Nottinghamshire, UK.
-        Yang, Q., Xie, Y., Li, W., Jiang, Z., Li, H., & Qin, X. (2014). Assessing soil erosion risk in karst area using fuzzy modeling and method of the analytical hierarchy process. Environmental earth sciences, 71(1), 287-292.
-        Zhou, H. Y., Pan, X. Y., & Zhou, W. Z. (2017, January). Assessing spatial distribution of soil erosion in a karst region in southwestern China: A case study in Jinfo Mountains. In IOP Conference Series: Earth and Environmental Science (Vol. 52, No. 1, p. 012047). IOP Publishing.
-        Zhou, H. Y., Pan, X. Y., & Zhou, W. Z. (2017, January). Assessing spatial distribution of soil erosion in a karst region in southwestern China: A case study in Jinfo Mountains. In IOP Conference Series: Earth and Environmental Science (Vol. 52, No. 1, p. 012047). IOP Publishing.
-        Yue-Qing, X., Jian, P., & Xiao-Mei, S. (2009). RETRACTED ARTICLE: Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China. Environmental Geology, 56(8), 1643-1652.