نوع مقاله : مقاله علمی پژوهشی
نویسندگان
1 دانشیار گروه سیستم اطلاعات جغرافیایی و سنجش از دور دانشگاه تبریز
2 دانشجو/دانشگاه تبریز
چکیده
تازه های تحقیق
توجه به این نکته که آیا قیمت زمین میتواند در توسعه فیزیکی شهرها تأثیر داشته باشد یا خیر در این تحقیق مورد بررسی قرار گرفت و نتایج نشان داد که در کنار سایر معیارها میتواند تأثیر بارزتری داشده باشد. علاوه بر استفاده از دادههای مناسب و صحیح، استفاده از روش مناسب نیز یکی از شروط به دست آوردن نتایج صحیح و دقیق میباشد. در تحقیق حاضر، استفاده از روشهای طبقهبندی تصاویر ماهوارهای با استفاده از روشهای یادگیری ماشین دارای دقت بالایی برای استفاده از نتایج بود. علاوه بر آن استفاده از معیارهایی همچنین قیمت زمین و معیارهای زمینشناسی و کاربری اراضی و تحلیل برتری و اهمیت هر کدام از آنها در توسعه فیزیکی شهر نشان داد که قیمت زمین و شیب و کاربری اراضی از سایر معیارها تأثیر بیشتری داشته و میتوانند تعیین کننده جهت توسعه فیزیکی شهرها باشند. تحلیل و همپوشانی در محیط شبکههای عصبی مصنوعی نیز نشان داد که حصول نتایج نزدیک به واقعیت میتواند در گرو استفاده از روشهای مناسب باشد. نتایج تحقیق حاضر با نتایج عامری و همکاران (1396)، در تحقیقی توسعه شهری در جزیره مینو را با استفاده از سیستم اطلاعات جغرافیایی بررسی کردند و نتایج آنها نشان داد؛ علیرغم اینکه منطقه مورد نظر برای توسعه شهری مناسب است، ساختار کالبدی و رفاه اجتماعی باید مورد نظر برنامهریزان قراربگیرد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
In this study, using images of Landsat-8, Landsat-7 and Sentinel-2 satellites in the coding environment of Google Earth Engine, their uses and changes during the two periods before and after urbanization (from 2000 to 2008 and from 2008 to 2019) will be categorized and then the next five-year development forecast of Sahand city (until 2025) will be made. Perceptron multilayer artificial neural network (MLP) method has been used as a method for predicting spatial multi-criteria decision making (MCDM). The independent variables used in the present study in predicting the physical development of the city are land price, type of use, slope, slope direction, altitude, distance from urban areas, distance from waterway network, distance from fault, distance from network Passages (main and secondary). The results of classification of satellite images showed that the physical development of Sahand new city has been done in order to turn barren lands into urban land. In addition, physical development was built to turn cheaper land into areas. The built lands have been greatly developed and from 64,155 square meters in 2000 to 682,192 square meters in 2019. Among the image classification methods for land use extraction, the SVM method was the best method and also the Sentinel-2 satellite images had the highest accuracy. The multilayer perceptron artificial neural network was used to predict the future physical development of the new city of Sahand, which according to studies, the development is predicted in directions that are based on the cheapness of the land and the limitations. Geomorphological is like slope and altitude.
کلیدواژهها [English]