Document Type : Research Paper

Authors

1 PhD student, Department of Natural Geography (Geomorphology), University of Mohaghegh Ardabili, Ardebil, Iran.

2 Mousa Abedini Associate Professor Department of Geomorphology Faculty of Literature and Humanities University of Mohaghegh Ardabili- Ardabil,Iran

3 Department of Geography, University of Tabriz

4 Associate professor of RS & GIS, University of Tabriz

10.22034/gp.2021.10836

Abstract

Introduction
Similar to other parts of Iran, Azerbaijan Plateau is active tectonically due to the Eurasia-Arabia cluster convergence, and its hydrogeomorphological impacts are evident as a strike-slip fault, folding, horst, graben, changes in the topography, and drainage system (Abedini, 2016: 75). Therefore, investigating and understanding the function of faults can significantly contribute to analyzing the tectonic activities, the occurrence of earthquakes, their geomorphic hazards as well as the environmental planning and management, the adaptation of the land use, and constructions regarding the tectonic situation of the regions and reduce their hazards.
The current research aims to identify the geomorphic hazards caused by the tectonic activities, especially the behavior of faults, for the planning and management before the occurrence of hazards and their resulted crises. In this regard, the principal purpose of this research is to study and identify the faults of the Qoshadagh fault zone and their geomorphic impacts in the northwest of Iran and a part of the structural block of Aras Fault Zone (Berberian & Yeats, 1999).
Data and Methodology
Three methods of manual, automatic, and mixture were used to precisely extract the region's faults, affected by the doublet seismic activities of 12 August 2012 with the magnitude of 6.4 and 6.2 Richter that had only 6 kilometers and 11-minute distance from each other (Donner et al., 2015). Moreover, survey study and manual measurement of the replacements were used. Hence, Envi 5.1 software was used to apply the techniques and process of images. Also, PCA Geometrica was used to automatically extract the lineaments, and ArcMap 10.4.1 was applied to draw the output map. In the automatic method, Landsat 8 satellite image of OLI sensor with 33 rows and 168 paths was fused with its panchromatic band (15 meters). Then, the edge detection, thresholding, and extraction of fractures were conducted using algorithms. The map of lineaments was prepared using filtering, PCA, and RGB color model in the manual or visual method, and, was adapted using the automatic method.  Images of Sentinel-B2 and Spot were also used due to some properties to ensure. Finally, the obtained lineaments were checked by the field data.  
 Discussion and Conclusion
After analyzing the automatic method results, applying the lineaments manually along with the field controls, the obtained result is displayed in an overlaying map. Then, by investigating the obtained lineaments and removing the repetitive and incompatible lineaments automatically, and consultant with the tectonics experts and geomorphologists familiar with the region, the lineaments with 80% possibility of being a fault were drawn in a final map of the region’s faults. It is evident that the extraction of the definite faults of the region requires different RS sources, such as radar data, GPS, gravimetric satellites, etc. Rose diagram was used to understand the length and direction of the faults. As a result, the length of the faults was more in 100-280 degree and 145-325 degree, and no-fault was extracted along the 80 degrees, although this length can be seen in the field observations. The results of the field study, overlaying some of the geomorphological effects, including the obstruction and deviation of the waterways, formation of the pressure ridges, and fault pools, have confirmed and improved the software outputs.
Results
Using purposive remote sensing along with the field studies can play a significant role in identifying the structural ruptures that are usually hardly visible and emphasize the spatial-temporal changes after the earthquake and its role in reducing the ground hazards (Yang et al., 2017). In this regard, the faults of the Qoshadagh zone were extracted using automatic, manual, and semi-automatic methods with satellite images. The obtained results were compared with the field study and adapted to the effects and fractures caused by the earthquake and the new faults were also identified. The obstruction and deviation of the waterways, fault edges, tension, and pressure ridges, etc., are the most significant evidence that contributed to extracting the fault lineaments using the satellite images. In the current study, the faults of the region were displayed as the fault system instead of single fault lineaments that were in line with the previous studies with a different purpose (Copley et al., 2012; Ghods et al., 2015). Also, the privilege extension of faults in western and eastern directions was identified. Using automatic and manual methods is not sufficient. Therefore, the mixture method was used to obtain better and more precise results. It is evident that the extraction of the definite faults of the region cannot be obtained only by having optical images and other RS resources are required, such as radar data, GPS, and gravimetric satellites (with a high spatial separation). Furthermore, the field control and survey and investigating the geomorphologic forms must be considered an inseparable part of these studies.

Keywords

Main Subjects

-        افشاری، سمیه؛ آقا محمدی، حسین؛ نوری، محمدرضا (1395)، استخراج گسل‌های زمین‌شناسی با استفاده از داده‌های سنجش‌ازدور (مطالعه موردی: منطقه کپه‌داغ)، اکتشاف و تولید نفت و گاز، شماره 137.
-        بابااحمدی، عباس (1388)، کاربردهای سنجش‌ازدور در زمین­شناسی، چاپ دوم، تهران: انتشارات آوای قلم.
-        حاج‌منوچهری، معصومه؛ آرین، مهران؛ سربی، علی (1389)، بررسی گسل‌ها و خطواره‌های گستره کرج- قزوین بر اساس دورسنجی، زمین، دوره 5، شماره 4، صص 21-34.
-        حسامی آذر، خالد؛ جمالی، فرشاد؛ طبسی، هادی (1382)، نقشه گسل‌های فعال ایران، مقیاس:2500000: 1، انتشارات پژوهشگاه زلزله‌شناسی.
-        رجبی، معصومه؛ شیری طرزم، علی (1388)، نئوتکتونیک و آثار ژئومرفولوژیکی گسل اصلی تبریز و گسل‌های فرعی مرتبط با آن، تحقیقات جغرافیایی، شماره 94، صص 68-96.
-        رضایی مقدم، محمدحسین؛ اندریانی، صغری؛ ولیزاده­کامران، خلیل؛ الماس­پور، فرهاد (1395)، تعیین بهترین الگوریتم استخراج کاربری-پوشش اراضی و کشف تغییرات از تصاویر ماهواره‌ای لندست (مطالعه موردی: حوضه صوفی چای مراغه)، فضای جغرافیایی، سال شانزدهم، شماره 55، صص 65-87.
-        رنجبری، احد؛ مددی، عقیل (1396)، مطالعه گنبد آتش‌فشانی بهلول‌داغی و تأثیر آن بر مورفولوژی منطقه شمال تبریز، مخاطرات محیط طبیعی، سال ششم، شماره سیزدهم، پاییز 1396، صص 49-66.
-        عابدینی، موسی (1395)، ژئومورفولوژی تکتونیکی، جلد اول، چاپ اول، اردبیل، دانشگاه محقق اردبیلی.
-        عابدینی، موسی؛ ولیزاده­کامران، خلیل؛ سرمستی، نادر (1395)، ارزیابی فعالیت و توان لرزه­زایی گسل تبریز و برآورد تلفات انسانی کلان‌شهر تبریز با فن­آوری سنجش‌ازدور و GIS، جغرافیا و برنامه­ریزی، شماره 57، صص 199-216.
-        فریدی، محمد؛ اسماعیلی، سیروس؛ احمدزاده، الهه (1395)، سامانه‌های گسلی چپ‌گرد و نقش آن‌ها در تکامل ریخت‌زمین‌ساختی شمال باختری ایران، سی‌وپنج مین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی.
-        مختاری، داود (1385)، جایگاه ژئومورفولوژی در ارزیابی بلایای طبیعی و مقابله با آن‌ها در ایران، فصل­نامه جغرافیایی سرزمین، سال سوم، شماره 9، صص 51–65.
-        محمودزاده، مریم؛ الماسیان، محمود؛ پورکرمانی، محسن؛ سلطانی، ماهیار (1390)، تحلیل ساختاری گسل تبریز با استفاده از داده­های دورسنجی، فصل­نامه علوم زمین، سال ششم، شماره 19، صص 119-131.
-        مقیمی، ابراهیم؛ محمودی، فرج­ا... (1383)، روش تحقیق در جغرافیای طبیعی (ژئومورفولوژی)، تهران، نشر قومس، 277 صفحه.
-        ولیزاده­کامران، خلیل (1380)، پهنه­بندی خطر زلزله در شهرستان تبریز با استفاده از سنجش‌ازدور و GIS، فضای جغرافیایی، شماره 4، صص 49–66.
-       وینسنت، رابرت­کی، 1388، مبانی دورسنجی زمین­شناختی و زیست­محیطی، مجید هاشمی تنگستانی، چاپ اول، تهران، نشر دانشگاهی، 472 صفحه.
-        Akman, A. & Tufekci. K. 2005. Determination and characterisation of fault systems & geomorphological features by RS & GIS techniques in the WSW Part of Turkey. Tectonophysiscs,284: 317-386
-        -Baroň, I., et al, 2013. Paleostress analysis of a gigantic gravitational mass movement in active tectonic setting: The Qoshadagh slope failure, Ahar, NW Iran. Tectonophysics.605-70–87.
-        Berberian, M. & Yeats, R. S., 1999. Patterns of historical earthquake rupture in theIranian Plateau, Bull. Seism. Soc. Am., 89, 120–139.
-        Copley, A., Faridi, M., Ghorashi, M., Hollingworth, J., Hackson, J., Nazari, H., Oveisi, B. & Talebian, M., 2013. The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish–Iranian Plateau, Geophys. J. Int., doi:10.1093/gji/ggt379.
-        Donner, S., Ghods, A., Krüger, F., Rößler, D., Landgraf, A., Balato, P., 2015, 11 August 2012: Regional Seismic Moment Tensors and a Seismotectonic Interpretation, Bulletin of the Seismological Society of America,105 (2A): 791-807.
-        Eirini S., Stelios P., 2011. Identification of lineaments with possible structural origin using ASTER images and DEM derived products in Western Crete Greece, Earsele Proceeding, Vol.10, pp.1-18.
-        Geological Survey of Iran., 2002. Ahar, Khoja & varzghan, scale1:100,000.
-        Ghods, A., Sabanian, E., Bergman, E., Faridi, M., Donner, S., Mortezanejad, G. & Aziz-Zanjani, A., 2015. The Varzaghan–Ahar, Iran, Earthquake Doublet: implications for the geodynamics of northwest Iran, Geophys. J. Int. 203, 522–540.
-                 Jain, S, and Verma, PP. K., 2006. Mapping active tectonics intensity zones using remote sensing and GIS, Journal of Indian Society of Remote Sensing, 34(2), pp 131-142.
-        Jenson, J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice Hall Series in Geographic Information Science, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey, USA.
-        Kargel, J. & et al, 2016. Geomorphic and Geologic controls of Geohazards induced by Nepal’s 2015 Gorkha earthquake, Science, Vol. 351, Issue 6269, aac8353, DOI: 10.1126/science.aac8353.
-        Mallast, U., Gloaguen, R., Geyer, S., Rodiger, T., Siebert, C., 2011. Semi-automatic extraction of lineaments from remote sensing data and the derivation of groundwater flow paths, Hydrology and Earth System Sciences Discussions, Vol.8, 1399-1433
-        Morales A., Daniel J., Rosario M., 2012. Application of Remote Sensing techniques to identify major faults in the Island of Puerto Rico using SAR and ALSR images, Geological Society of America Bulletin. Vol.87, PP.1463-1469.
-        Oleary, D., Freidman, J., & Pohn, H., 1976, Lineament, linear, lineation: Some proposed new definitions for old terms, Geol. Soc.Am. Bull.87, 1463–1469.
-        Rosenfeld, C. L. 2004. Geomorphological Hazard, Encyclopedia of Geomorphology, Volume 1, Rovtledge press, P, 423-426.
-        Yang, W., Qi, W., Wang, M., Zhang, J., Zhang, Y., 2017. Spatial and temporal analyses of post-seismic landslide changes near the epicentre of theWenchuan earthquake, Geomorphology 276 8–15.
-        Zhang W., Liu W., Yang J., Chen L., 2013. Remote sensing data analysis for structural information of active faults, International Conference on Ecology, Waste Recycling and Environment Advances in Biomedical Engineering, Vol.7, PP.13-18.