Document Type : Research Paper

Authors

1 ph.d.student ph.d. student in climatology departement of Geography Marand Branch Islamic Azad University Marand Iran

2 Professor, Department of Climatology, Faculty of Planning and Environmental Sciences - Tabriz University,

3 Professor, Department of Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University

4 Associate Professor, Department of Remote Sensing and GIS, Faculty of Planning and Environmental Sciences, Tabriz

10.22034/gp.2020.40649.2647

Abstract

Introduction
The water cycle in nature is directly related to the climate of that region. Reasonable and correct use of water resources requires accurate quantitative and qualitative knowledge and collection of appropriate climate data and information. Depletion of groundwater reservoirs, drying of canals and springs and even semi-deep wells and reduction of deep well discharge, change of groundwater flow direction, salinization of aquifers, salinization of soil due to irrigation with saline water, barren The emergence of fields, soil erosion, etc. has put most of the plains of the country at risk of further desertification (Tavousi, 2009: 14).
Atmospheric precipitation is the main source of surface and groundwater and the study area is poor in terms of atmospheric precipitation and its amount is between 150 to 450 mm per year, which varies in plain and mountainous areas. The climate of the region is semi-arid and cold and is mostly influenced by the Mediterranean climate. Due to the fact that groundwater is the most important source of water consumption in the study area, the impact of climate change, especially precipitation on the water table of wells in the area was investigated in this study.
Materials and methods
To study the trend of groundwater level changes in Marand plain, water table data of 23 piezometric wells and data of 8 rain gauge stations during the last 16 years of 1395-1395 were used. After using the correlation matrix method to select rainfall stations and considering the complete statistical data and appropriate coverage of the area by these stations, 4 stations were selected for the study and for each station, a piezometric well was selected within the station. This research was first calculated using precipitation data and water table of piezometric wells SPI and SWI values ​​and then NRMC values ​​for each index, respectively, in each method are briefly referred to:
Calculate SPI and plot seasonal SPI variations of selected stations
The standardized rainfall index was provided by McKay et al. (1993, 1995) to provide a warning and help assess drought severity and is calculated by the following formula:
                  Relation 1:        SPI = (X_ij-X_im) / σ
In the above relation, X_ij is the seasonal rainfall at rainfall station i, with j number of observations, X_im is the long-term average rainfall and σ is the standard deviation.
Calculate SWI and plot the seasonal SWI of selected wells
 The standard water level index was presented in 2004 by Bui Yan et al. (2006) to monitor fluctuations in groundwater aquifers in the study of hydrological droughts, which is calculated by the following formula:
Relation 2:             SWI = (W_ij-W_im) / σ
Where W_ij is the seasonal average of the water table of observation wells i to j, W_im is the long-term seasonal average and σ is the standard deviation.
Calculate the NRMC values ​​of each indicator and plot the normalized distribution curve
In this method, seasonal normalized distribution curves were adjusted for both SPI and SWI indices. Cumulative normalized curve is a kind of condensation diagram of a climatic or hydrological variable (such as precipitation and water table) that is extracted from the subtraction of each observation in the statistical series of the long-term average and its division by the average according to the following formula. (Rasooli, 1994)
Relation 3:             
NRMC xi = ( (Xi-X m) / ({(Xi-X ̅m) / X ̅m})  ) * 100            
In the above formula, Xi represents the amount of each rainfall observation or the amount of water table and X ̅m is the long-term average in the series of observations.
Results and Discussion
Investigation of normalized distribution curves showed a correlation between precipitation changes and groundwater level in Marand plain. This correlation has a higher significance with a delay season. Shamsipoor (2003) in Hamedan plain achieved a 9-month delay between precipitation and water table. Mohammadi et al. (2012) in Arak plain expressed the impact of groundwater resources from drought with a delay of two months. The results of the study (Rudel and Lee 2014) in the study of groundwater drought index in the United States showed that the SPI drought index with a delay of 12 and 24 months had the highest correlation with the SWI index.
Conclusion
Considering the more fluctuations of the water table than the fluctuations of the rainfall, it can be concluded that human factors such as uncontrolled harvesting is an effective factor on the water level of wells. Komasi et al. (2016) stated the effect of human factors on the decrease of groundwater level before the factor of climate change in Silakhor plain. Calculations showed that the value of correlation for both SPI and SWI indices in the nonlinear multivariate equation is higher than the value of the linear equation, which indicates the effect of several other factors in addition to precipitation fluctuations on the groundwater level. According to the results of the study, it seems that the groundwater level in addition to precipitation depends on other factors such as geology, lithology, tectonic morphology, the shape of the aquifer, the distance of aquifers to the feeding site and .... And to achieve more complete results, it seems necessary to address these factors in future research.
 

Keywords

Main Subjects

  • اصغری مقدم، اصغر، فخری، میرسجاد، نجیب، مرتضی، (1394)، پهنه بندی پتانسیل آلودگی آب زیرزمینی آبخوان دشت مرند به روش AVI و مدلهای DRASTIC در محیط GIS، نشریه جغرافیا و برنامه ریزی دانشگاه تبریز، دوره 19 ،صفحه 41-19
  • ایزدی، عزیزالله، داوری، کامران، علیزاده، امین و بیژن، قهرمان، (1387)، کاربرد مدل داده‌های ترکیبی در پیش­بینی سطح آب زیرزمینی. مجله آبیاری و زهکشی ایران، ج 2، ش 2، صفحه 144-133.
  • حسن لی، علی مراد و شفیعی، مجید، (1389)، راهبردهای سازگاری با خشکسالی. گزارش راهبردی مرکز تحقیقات استراتژیک مجمع تشخیص مصلحت.
  • رسولی، علی اکبر،(1390) ،مقدمه ای بر هواشناسی و اقلیم شناسی ماهواره ای ،تبریز : انتشارات دانشگاه تبریز، چاپ اول ،صفحه 352-348.
  • رسولی، علی اکبر، ( 1994 )، تحلیل زمانی – مکانی بارش­های رعد و برقی، رساله دکترا، علوم زمین – اقلیم شناسی کاربردی و سنجش از دور و GIS، دانشگاه ولونگونگ استرالیا .
  • رسولی، علی اکبر. روشنی، رقیه. قاسمی، احمدرضا ( 1392 ). تحلیل تغییرات زمانی و مکانی بارش­های سالانه ی ایران. تحقیقات جغرافیایی. دوره بیست و هشت، شماره صدو هشت. صفحه 224-205.
  • رضایی بنفشه، مجید، جلالی عنصرودی، طاهره ،( 1397 ) بررسی تاثیر تغییر اقلیم بر تغییرات زمانی و مکانی تغذیه آبهای زیرزمینی حوضه آبریز تسوج، نشریه جغرافیا و برنامه ریزی دانشگاه تبریز، دوره 22، شماره 64، صفحه 79-59 
  • زینالی، بتول.، فریدپور، مجتبی و صیاد، اصغری سراسکانرود، (1395). بررسی تأثیر هواشناسی و هیدرولوژیکی بر ویژگی­های کمی و کیفی آب­های زیرزمینی (مطالعه موردی: دشت مرند). پژوهشنامه مدیریت حوزه آبخیز، سال هفتم، شماره 14، صفحه187-177.
  • شکیبا، علیرضا، میرباقری، بابک و خیری، افسانه، (1389)، خشکسالی و تأثیر آن بر منابع آب زیرزمینی در شرق استان کرمانشاه با استفاده از شاخص SPI، فصلنامه علمی پژوهشی انجمن جغرافیای ایران، سال هشتم، شماره 25، صفحه 124-105.
  • صمدی بروجنی، حسین و ابراهیمی، عطااله، (1389)، پیامدهای خشکسالی و راه­های مقابله با آن در استان چهارمحال و بختیاری. انتشارات سروش، مرکز تحقیقات منابع آب (دانشگاه شهرکرد)، چاپ اول،صفحه 512.
  • طاووسی، تقی، (1388)، فرآیندها و پیامدهای بیابان‌زایی. فصلنامه چشم­انداز جغرافیایی. سال چهارم. شماره یک.
  • کشاورز، مرضیه،کرمی، عزت اله و زمانی، غلامحسین، (1389)، آسیب‌پذیری خانوارهای کشاورز از خشکسالی. علوم ترویج و آموزش کشاورزی ایران، جلد 6، شماره 2، صفحه 32-15.
  • محمدی، حسین، (1390)، آب و هواشناسی مناطق خشک. چاپ اول: دانشگاه تهران.
  • مختاری ،داود. ( 1381 ). نقش عوامل تکتونیکی در تکامل مخروط افکنه­های دامنه شمالی میشو داغ. فضایی جغرافیایی، شماره 5 ،
  • مختاری، داود ،( 1388 )، آبراهه­ها مطالعه موردی : رودخانه باغلار در دامنه شمالی میشو داغ ( شمالغرب ایران )، جغرافیا و برنامه ریزی محیطی، شماره 22 .
  • ولی زاده کامران، خلیل و همکاران، ( 1389 )، بهینه سازی ( اگروکلیماتیک آفتابگردان در شمال دریاچه ارومیه، نشریه علمی پژوهشی جغرافیا و برنامه ریزی، سال 17، شماره 45، پاییز 1392.
  • Bhuiyan, C. R.P. Singh and F.N. Kogan. 2006. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8: 289–302.
  • Li B, & Rodell M (2014) Evaluation of a model-based groundwater drought indicator in the conterminous US. Hydrology 526:78-88
  • McKee, T. B. N. Doesken, J. and Kleist, J. (1993). The relationship of drought frecuency and duration to time scales, Eight Conf. On Applied Climatology, Anaheim, CA, Amer. Meteor. Soc. 179–184.
  • Mishra AK, Singh VP (2010) A review of drought concepts. Journal of Hydrology 391: 202–216.
  • Shrestha, S. Bach, T. V. & Pandey, V. P. (2016). Climate change impact on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) sc Environmental science & policy, 61, 1-13.
  • Van Lanen, H. A. J. & Peters, E. (2000). Definition, effects and assessment of groundwater droughts. In Drought and drought mitigation in Europe (pp. 49-61). Springer, Dordrecht.
  • Wu H, Hayes MJ (2001) An evaluation of the standardized precipitation index, the China index and statistical Z- Score. International Journal of Climatology 21: 741-758.