Document Type : Research Paper

Authors

1 Doctoral student of hydrology and meteorology, Zanjan University, Zanjan, Iran

2 Assistant Professor of Climatology, Department of Geography, Zanjan University, Zanjan, Iran

3 Professor of Climatology, Department of Geography, Zanjan University, Zanjan, Iran

10.22034/gp.2022.47673.2886

Abstract

Introduction
The results of the study showed that the correlation headley cell and subtropical jet on the atmosphere Iran at the level 200 hPa has a positive correlation with a value of 0.4-0.7 to 35 ° latitude and also regression analysis showed that in latitudes between 15 35 degrees north of the subtropical jet 1(m/s) is higher than normal, although in 2017 up to latitudes 30 degrees north showed an increase of 2(m/s), which had a negative effect on rainfall.
Data and Method
The relationship between Hadley cell and olr in the southern, southwestern and southeastern regions of Iran with a value of 0.4 and the Zagros and northwestern heights of Iran with a value of 0.7 and regression with a value of (w/m2) 0.01 more than normal.
Results and Discussion
It acts as a tangible source of heat in the middle Wordspehr and the heat is added directly to the middle Wordspehr and causes heating of the upper half of the Wordspehr.
Conclusion
Regression 2 to 1 is shown. Low relative humidity along with the dried air mass is located below the descending branches of the headley cell, which has ruled the drought conditions (-0/7) showed that it creates conditions for lack of rainfall and drought.

Keywords

Main Subjects

  • جلالی، مسعود؛ حسینی صدیق، سید محمود (1398)، گسترش قطب سو چرخش سلول هادلی در نیمکره شمالی، هواشناسی و علوم جو، جلد 2، شماره 2، تابستان، صص 129-142.
  • حسینی صدیق، سید محمود؛ جلالی، مسعود (1400)، بررسی ساختار دینامیکی گردش نصف النهاری سلول هادلی در کمربند حاره، نیوار، دوره 45، شماره 113-112، بهار و تابستان، صص 1-15.
  • عالمزاده، شاهین. احمدی گیوی، فرهنگ. محب الحجه، علیرضا. یازجی، دانیال (1396). ساختار هندسی جت آفریقا-آسیا در وردسپهر زبرین و پاسخ آن به گرمایش زمین در مدل های CMIP5. مجله ژئوفیزیک ایران، جلد11، شماره 3، صفحه 1 تا 26.
  • قانقرمه، عبدالعظیم (1399). ارزیابی تغییر موقعیت رودباد جنب حاره ای مستقر بر روی ایران و آینده نگری آن بر اساس دو مدل اقلیمی  CanESM2 و GFDL-CM3T، جغرافیا و مخاطرات محیطی.
  • گرمسیری مهوار، علی اکبر؛ عزیزی، قاسم، محمدی، حسین؛ کریمی احمدآباد، مصطفی (1400)، گردش کلی جو در اطلس و آرام شمالی و ارتباط آن با توسعه و توقویت واچرخندهای جنب حاره آزورز و هاوایی، فیزیک زمین و فضا، دوره 47، شماره 3، پاییز.
  • گرمسیری مهوار، علی اکبر؛ عزیزی، قاسم، محمدی، حسین؛ کریمی احمدآباد، مصطفی (1399)، تحلیلی بر واچرخندهای جنب حاره در ترازهای میانی جو از شما آفریقا تا ایران، نشریه هواشناسی و علو جو، جلد 3، شماره 2، تابستان، صص 129-147.
  • Bin Wang, Michela Biasutti, Michael P. Byrne, Christopher Castro, Chih-Pei Chang, Kerry Cook, Rong Fu, Alice M. Grimm, Kyung-Ja Ha, Harry Hendon, Akio Kitoh, R. Krishnan, June-Yi Lee, Jianping Li, Jian Liu, Aurel Moise, Salvatore Pascale, M. K. Roxy, Anji Seth, Chung-Hsiung Sui, Andrew Turner, Song Yang, Kyung-Sook Yun, Lixia Zhang, and Tianjun Zhou (2021). Monsoons Climate Change Assessment. American Meteorological society. https://doi.org/DOI:10.1175/BAMS-D-19-0335.1.
  • Broccoli, A. J., Dahl, K. A. and Stouffer, R. J., (2006), Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33(1).
  • Chen JY, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841. doi:10.1126/science.1065835.
  • Cook, Celia, Chris J.C. Reason, and Bruce C. Hewitson.(2004). "Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region." Climate Research, 26: 17–31.
  • Cook, K.H., (2004). Hadley Circulation Dynamics: Seasonality and the Role of Continents. In “The Hadley Circulation: Past, Present, and Future”. Series: Advances in Global Change Research, Vol.21. Diaz, Henry F.; Bradley, Raymond S. (Eds.), 511 p., SBN: 1-4020-2943-8.
  • CSIRO (Commonwealth Scientific and Industrial Research Organization) (2012) Climate and water availability in South-Eastern Australia: a synthesis of findings from phase 2 of the South Eastern Australian climate initiative (SEACI). 41.
  • D’Agostino, R., J. Bader, S. Bordoni, D. Ferreira, and J. Jungclaus, (2020). Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Res. Lett., 46, 1591–1601, https://doi.org/10.1029/2018GL081589.
  • Dai, A (2013). Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 52–58, doi: 10.1038/ nclimate1633.
  • Feng, S., and Q. Fu, (2013). Expansion of global drylands under a warmer climate. Chem. Phys., 13, 10081–10094, doi: 10.5194/acp-13-10081-2013.
  • Gillet, N. P., Zwiers, F. W., Weaver, A. J. And Stott, P.A., 2003. Detection of Human Influence on Sea-Level Pressure, Nature, Vol. 40, No. 422, PP. 292-294.
  • Hartmann, D. L., (1994). Global Physical Climatology, Academic Press.
  • Hartmann, D. L., (2016). Chapter 6 - atmospheric general circulation and climate, in Global Physical Climatology (Second Edition), second edition ed., pp. 159 – 193, Elsevier, Boston.
  • Hou, A. Y. and Lindzen, R. S., (1992), The influence of concentrated heating on the Hadley circulation. Journal of the atmospheric sciences, 49(14), 1233-1241. http://iridl.ldeo.columbia.edu/.
  • Hu YY, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979.Atmos Chem Physics 7:5229–5236. doi:10.5194/acp-7-5229-2007.
  • IOCI (2012). Western Australia’s weather and climate: A synthesis of Indian Ocean Climate Initiative (IOCI) stage 3 research. CSIRO and BoM, 119 pp.
  • Kutile, H., Maheras, P., and Guika, S. (1998). Singularity of Atmospheric Pressure in the Eastern Mediterranean and its Relevance to Internal Variations of Dry and Wet Spells. Int. J. Climatol, 18(3): 317-327.
  • Levine, X. J. and Schneider, T., (2011), Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. Journal of the Atmospheric Sciences, 68(4), 769-783.
  • Lindzen, R. S. and Hou, A. V., (1988), Hadley circulations for zonally averaged heating centered off the equator. Journal of the Atmospheric Sciences, 45(17), 2416-2427
  • Lu, J., Chen, G. and Frierson, D. M., (2008), Response of the zonal mean atmospheric circulation to El Niño versus global warming. Journal of Climate, 21(22), 5835-5851.
  • Ma, S., and Coauthors, (2021). Detectable anthropogenic shift toward heavy precipitation over eastern China. Climate, 30, 1381–1396, https://doi.org/10.1175/JCLI-D-16-0311.1.
  • Menzel, M. E., Waugh, D., & Grise, K. (2019). Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophysical Research Letters, 46, 7045–7053. https://doi.org/10.1029/ 2019GL083345.
  • Mitas CM, Clement A (2005). has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32(3):L03809. Doi: 10.1029/2004GL021765.
  • Morales MS, Christie DA, Villalba R et al (2012). Precipitation changes in the South American Altiplano since 1300AD reconstructed by tree-rings. Clim Past 8:653–666. Doi: 10.5194/ cp-8-653-2012.
  • Nguyen, H., C. Lucas, A. Evans, B. Timbal, and L. Hanson (2015). Expansion of the Southern Hemisphere Hadley Cell in REsponse to Greenhouse Gas Forcing. J. Climate, 28, 8067–8077, doi:0.1175/JCLI-D-15-0139.1.
  • Numaguti, A.,(1995), Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones. Part II: Sensitivity to meridional SST distribution. Journal of the atmospheric sciences, 52(8), 1128-1141.
  • Oort, A. H. and Yienger, J. J.,(1996) bserved interannual variability in the Hadley circulation and its connection to ENSO. Journal of Climate, 9(11), 2751-2767.
  • Ru-Ping HUANG, Shang-Feng CHEN, Wen CHEN & Peng HU (2018). Has the regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades?, Atmospheric and Oceanic Science Letters, 11:6, 454-463, DOI: 10.1080/16742834.2018.1507412
  • Scheff, J., and D. M. W. Frierson (2012). Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi: 10.1029/2012GL052910.
  • Su, H., Jiang, J. H., Zhai, C., Shen, T. J., Neelin, J. D., Stephens, G. L., & Yung, Y. L. (2014). Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. Journal of Geophysical Research: Atmospheres, 119, 5787–5805. https://doi.org/10.1002/2014JD021642.
  • Trenberth, K., and D. Stepaniak, (2003). Seamless poleward atmospheric energy transports and implications for the Hadley circulation, J. Climate, 16(22), 3706–3722, doi:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.
  • Wang, B; Jin, C; Liu, J (2020), Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate.volume 3. p:6471-6488. DOI: 10.1175/JCLI-D-19-0993.1.
  • Waugh, D. W., Coauthors. (2018). Revisiting the relationship among metrics of tropical expansion. J. Climate, https://doi.org/ 10.1175/JCLI-D-18-0108, in press.
  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang SK, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002). Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–843. Doi: 10.1126/ science.1065837.
  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang SK, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–843. doi:10.1126/ science.1065837.
  • Xian, T.; Xia, J.; Wei, W.; Zhang, Z.; Wang, R.; Wang, L.-P.; Ma, Y.-F. (1699). Is Hadley Cell Expanding? Atmosphere 2021, 12. https://doi.org/10.3390/ atmos12121699.
  • Xian, T.; Xia, J.; Wei, W.; Zhang, Z.; Wang, R.; Wang, L.-P.; Ma, Y.-F. Is Hadley Cell Expanding? Atmosphere (2021). 12, https://doi.org/10.3390/ atmos12121699.