Spatial analysis of residential prices in low-rise and high-rise buildings Case Study: (Area 5, Tehran)

Document Type : Research Paper

Authors

1 Department of Geography and Planning, School of Geography, University of Tabriz

2 Professor, Planning and Environmental Sciences, Urban Planning Group Tabriz University, Tabriz, IRAN

3 PhD student in Geography and Urban Planning, University of Tabriz

10.22034/gp.2023.57174.3158

Abstract

Fluctuations in housing prices and the cost of its services are among the most important social and economic issues. In a society where housing is heavily commercialized; Housing policies, real estate market, social environment affect housing values. District 5 of Tehran is known as the development area of Tehran due to its high growth rate. This research aims to take an effective step in identifying the preferences of consumers while estimating the qualitative demand for housing. Therefore, the aim of this research is to analyze the factors affecting housing prices using geographic weighted regression in low-rise and high-rise buildings in District 5 of Tehran. The research method is based on documentary and survey studies. The sample size was estimated using Cochran's 758 formula. then the classified probability method has been used to select the samples; The results of the findings showed that among the low-rise buildings in North Ponk neighborhoods, Program Organization, Baharan, and among the high-rise buildings in Bagh Faiz, Faraz, Naft neighborhoods, they have a higher price range than other neighborhoods. Also, the results of (GWR) showed that the variables of the infrastructure, the age and age of the building, the number of bedrooms, quality materials, the distance to the nearest green space, the width of the passage, the traffic situation and security in common and having a balcony and terrace, the distance to the nearest street main, the distance to the nearest commercial centers and the level of greenness of the street in low-rise buildings and the location of the unit on the floor, having a parking lot, the direction of the building, the distance to the nearest public transportation station, the distance to the nearest chain stores and the level of pollution in high-rise buildings They have the greatest impact on increasing property prices.

Keywords

Main Subjects


نوسانات قیمت مسکن و هزینه خدمات آن از مهمترین مباحث به لحاظ اجتماعی و اقتصادی است. در جامعه‌ای که مسکن به شدت تجاری ‌سازی شده است؛ سیاست‌های مسکن، بازار املاک، محیط اجتماعی بر ارزش‌های مسکن تأثیر می‌گذارند. منطقه 5 تهران به دلیل سرعت بالای رشد به پهنه توسعه شهر تهران شهرت دارد. این پژوهش بر آن است ضمن برآورد تقاضای کیفی مسکن در شناسایی ترجیحات مصرف­کنندگان گام موثری بردارد. از این رو هدف این پژوهش تحلیل عوامل موثر بر قیمت مسکن با استفاده رگرسیون وزنی جغرافیایی در ساختمان­های کم ارتفاع و بلند در منطقه 5 شهر تهران می­باشد. روش تحقیق مبتنی بر مطالعات اسنادی و پیمایشی است. حجم نمونه با استفاده از فرمول کوکران 758 برآورد گردید. سپس برای انتخاب نمونه­ها از روش احتمالی طبقه بندی شده استفاده شده است؛ نتایج یافته­ها نشان داد در بین ساختمان­های کم ارتفاع محله­های پونک شمالی، سازمان برنامه، بهاران و در بین ساختمان­های بلند محله­های باغ فیض، پرواز، نفت از دامنه قیمتی بالاتری نسبت به سایر محلات برخوردارند. همچنین نتایج حاصل از (GWR) نشان داد متغیرهای زیربنا، سن و قدمت بنا، تعداد اتاق خواب، مصالح با کیفیت، فاصله تا نزدیکترین فضای سبز، عرض گذر، وضعیت ترافیکی و امنیت بصورت مشترک و داشتن بالکن و تراس، فاصله تا نزدیک‌ترین خیابان اصلی، فاصله تا نزدیکترین مراکز تجاری و میزان سرسبز بودن خیابان در ساختمان­های کم ارتفاع و قرارگیری واحد در طبقه، داشتن پارکینگ، جهت ساختمان، فاصله تا نزدیکترین ایستگاه حمل‌ونقل عمومی، فاصله تا نزدیکترین فروشگاه­های زنجیره­ای و میزان آلودگی در ساختمان­های بلند دارای بیشترین تاثیر در افزایش قیمت ملک می­باشند.

Pourmohammadi Mohammad Reza; Ghorbani Rasoul; Taghipour Ali Akbar. (2013). Study of factors affecting housing prices in Tabriz city using hedonic model, Journal of Geographical Spatial Planning, 3 (9), 13-104. [In Persian]  
Hakim Doost Seyed Yaser; Rastegar Mohsen; Pourzaidi Ali Mohammad; Hatami Hossein. (2014). Spatial analysis of climatic drought and its effects on the spatial pattern of rural settlement location (case study: villages of Mazandaran province), Journal of Geography and Environmental Hazards, 11(1): 75-61. [In Persian]  
Rahnama Mohammad Rahim; Asadi Amir; Razavi Mohammad Mohsen. (2014). Spatial analysis of housing prices in Mashhad using geographical weighted regression, Quarterly Journal of Urban Ecology Research, 4(7): 73-84. [In Persian]  
Soheilivand Leila; Haghparast Farzin; Soltani Ali Reza; Faramarzi Mahsa. (2014). “Identification and analysis of key drivers affecting the provision of suitable housing for low-income groups in Tabriz city”, Scientific Journal of Geography and Planning, 25(78): 219-242. [In Persian]  
Saremi Hamid Reza; Heydari Mohammad; Aghaei Fatemeh. (2018). Spatial analysis of housing prices using the geographically weighted regression technique (case study: District 2 of Tehran Municipality), Urban Economics Journal, 2(3), 19-37. [In Persian]  
Zarghami Esmail; Azmat Hamid Reza; Fatore Chi Dorsa. (2018). “Analysis of effective factors in the management of sustainable residential complex construction planning in Iran”, Scientific Journal of Geography and Planning, 23(68): 217-195. [In Persian]  
Neighborhood Strategy Plan. (2016). District 5 of Tehran Municipality.
Azizi Mohammad Mehdi. (2004). The Place of Housing Indicators in the Housing Planning Process, Journal of Fine Arts, 17(1):31-42. [In Persian]  
Erfanian Mehdi; Hosseinkhah Maryam; Alijanpour Ahmad. (2013). An Introduction to OLS and GWR Multivariate Regression Methods in Spatial Modeling of Land Use Effects on Water Quality, Journal of Watershed Management Promotion and Development, 1(1):33-39. [In Persian]  
Abedini Asghar; Khazerloo Aram, Akrami Behrang; Khalili Amin; Azizi Parviz. (2013). "Evaluation and Measurement of Islamic-Iranian Housing Indicators in Old and New Neighborhoods of Urmia City", Scientific Journal of Geography and Planning, 26(81):133-149. [In Persian]  
Statistical Reports of the Office of Planning, Resource Supply and Housing Economics. (2016-2017). [In Persian]  
Muezzin Jamshidi Seyedeh Homa; Moghimi Maryam; Akbari Nematollah. (2011). Analysis of the     
          effect of government size on human development in OIC countries (GWR geographical
          weighted regression approach), Urban and Regional Studies and Research, 2(8): 116-95. [In
          Persian]   
Statistical Center of Iran. Housing price and rent information in Tehran city. (2016-2017). [In Persian]
Nikpour Amer; Rezadeh Morteza; Al-Haghli Tabar Nashli Fatemeh. (2019). Analysis of factors          
            affecting land prices using the geographical weighted regression (GWR) model (case study
     study:Babolsar), Quarterly Journal of Geography and Urban-Regional Planning, 9(31): 112-93.
            [In Persian]  
Anselin, L.,(1989), What is special about spatial data: Alternative perspectives on spatial data analysis, National Center for Geographic Information and Analysis, Santa Barbara, CA.
Barabási. A.,(2010), Bursts: The hidden pattern behind everything we do, Dutton Adult: Boston, Massachusetts, 264p.
Batty, M., & Longley, P.,(1994), Fractal Cities: A geometry of form and function, Academic Press:London, 341p.
Belasco, E., Farmer, M.C., & Lipscomb, C.A.,(2012), Using a finite mixture model of heterogeneous households to delineate housing submarkets, JRER, 34(40): 577–594.
Chen, Y.,(2009), Spatial interaction creates period-doubling bifurcation and chaos of urbanization,Chaos, Solitons & Fractals, 42(3):1316-1325.
Cao, K., Diao, M., & Wu, B. A.,(2019),Big Data-Based Geographically Weighted Regression Model for Public Housing Prices: A Case Study in Singapore. Ann. Am. Assoc. Geogr,109(8): 173–186.
Fotheringham, A.S., Brunsdon, C., & Charlton, M.E.,(2002),Geographically Weighted Regression, the analysis of spatially varying relationships University of Newcastle, Newcastle, 275p.
Helbich, M., & Brunauer,W.,(2010), Mixed GeographicallyWeighted Regression for Hedonic House Price Modelling in Austria, Univerity of Heidelberg: Heidelberg, 11(5):112-119.
Galster, G.,(2001), On the nature of neighbourhood, Urban Studies, 32(12):2111–2124.
Griffith, D.A.,(2008), Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR) , Environment and Planning, 40(11): 2751–2769.
Geniaux, G., & Martinetti, D.A.,(2016), new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models, Reg. Sci, Urban Econ, 72(1): 74–85.
Jiang, B.,(2015), Geospatial Analysis Requires a Different Way of Thinking: The Problem of Spatial Heterogeneity, GeoJournal, 10(3):1-13.
Kübra, B., Hayri, H., Denli, D., & Zafer Ş.,(2015), Ordinary Least Squares Regression Method Approach for Site Selection of Automated Teller Machines (ATMs), Procedia Environmental Sciences 26(1):66 – 69.
Li, H., Wei, Y.D., Wu, Y., & Tian, G.,(2019), Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure, Cities, 91(1):165–179.
Lu, J.,(2018), The value of a south-facing orientation: A hedonic pricing analysis of the Shanghai housing market,Habitat Int, 81(12): 24–32.
Liang, X., Liu, Y., Qiu, T., Jing, Y., & Fang, F.,(2018), The e_ects of locational factors on the housing prices of residential communities: The case of Ningbo China, Habitat Int,81(5): 1–11.
Liebelt, V., Bartke, S., & Schwarz, N.,(2019), Urban Green Spaces and Housing Prices: An Alternative Perspective,Sustainability, 11(2): 3707-3718.
Lin, J., Cromley, R., & Zhang, C., (2011), Using geographically weighted regression to solve the areal interpolation problem, Annals of GIS, 17 (1): 1–14.
Leung,Y., Chang, L. M., & Wen,X. Z.,(2000), Statistical tests for spatial nonstationarity based on the geographically weighted regression model, Environment and Planning, 32(1): 9–32.
Nakaya, T., Fotheringham, A.S., Brunsdon, C., & Charlton, M.,(2005), Geographically weighted Poisson regression for disease association mapping, 24(2):2695–717.
O’Sullivan, D.,(2003), GeographicallyWeighted Regression: The Analysis of Spatially Varying Relationships (review), Geogr, Anal, 35(8): 272–275.
Quirino. P.,(2012), The Dual of the Least-Squares Method, Department of Agricultural and Resource Economics University of California, Davis.
Qing, T., Wei, X., & Fu, A. A.,(2012), GWR-Based Study on Spatial Patter and Structurals Housing Price Deter minants of Shanghai, Econ. 32(2): 52–58.
Royuela, V., & Duque, J.C., (2013), HouSI: heuristic for delimitation of housing submarkets and price homogeneous areas, Computers, Environment and Urban Systems, 37(1):59-69.
Rich, H., Guanpeng, D., & Wenzhong, Z.,(2013), Using Contextualized Geographically Weighted Regression to Model the Spatial Heterogeneity of Land Prices in Beijing, China, Transactions in GIS, 17(6): 901–919.
Radosław, C., Aneta, C., & Mirosław, B., (2020), Spatial Analysis of Housing Prices and Market Activity with the Geographically Weighted Regression, International Journal o f Geo-Information, 9(6): 380-396.
Sisman,S., & Aydinoglu, A.C.,(2022), A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul, Land Use Policy, 119(11):136-183.
Tobler. W., (1970), A computer movie simulating urban growth in the Detroit region, Economic Geography, 46(2): 234-240.
Wheeler, D. C., & Páez, A., (2010),Geographically Weighted Regression. In. Fischer, M. M. -Getis, A. (ed.):Handbook of Applied Spatial Analysis Software Tools, Methods and Applications, Verlag, Berlin.
Won, J., & Lee, J.S.,(2018), Investigating how the rents of small urban houses are determined: Using spatial hedonic modeling for Urban Residential Housing in Seoul, 10(2):17- 31.
Wang, A., Lin, L., & Bao, S.J.,(2017), Spatially Non-stationary Analysis Between Commercial Land Price and Driving Factors in Hefei City, 37(3): 1535–1545.
Wang, D.,Victor J. L., & Huayi,Yu.,(2020), Mass Appraisal Modeling of Real Estate in Urban Centers by Geographically and Temporally Weighted Regression: A Case Study of Beijing’s Core Area, Land Management, 9(5): 143, 158.
Wu, C., Ren, F., Hu, W., & Du, Q., (2019), Multiscale geographically and temporally weighted regression: Exploring the spatiotemporal determinants of housing prices. Int. J. Geogr. Inf. Sci, 33(1), 489–511.
Xiaojin, L., Yaolin, L.b.,Tianqi, Q., Ying, J.,& Feiguo, F.,(2018), The effects of locational factors on the housing prices of residential communities: The case of Ningbo, China, Habitat International, 81(7):1-11.
Xufeng, J., Zelu, J., Lefei, L., & Tianhong, Z.,(2022), Understanding Housing Prices Using Geographic Big Data: A Case Study in Shenzhen, Sustainability, 14(9):1-20.
Zhang, X., Liu, X., Hang, J., Yao, D., & Shi, G.,(2016), Do urban rail transit facilities a_ect housing prices? Evidence from China, Sustainability, 8(1): 380-393.