An analysis of the level of vulnerability of urban areas against the natural hazards of "earthquake" with an emphasis on the crisis management approach (case study: Tabriz metropolis)

Document Type : Research Paper

Authors

1 PhD student in Geography and Urban Planning, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2 Department of Geography and Urban Planning, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

3 Assistant Professor, Department of Geography and Urban Planning, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

10.22034/gp.2024.59712.3218

Abstract

Earthquake is one of the most dangerous, destructive and unpredictable natural hazards. Therefore, identify the vulnerable areas of cities is necessary in order to increase the capacity to deal with earthquake risks and crisis management of this risk. In this regard, the present study was written with the aim of investigating the vulnerable levels of Tabriz metropolis against earthquakes and providing crisis management solutions (before the crisis) to reduce the effects of earthquakes. The research method in the current study is mixed (combination of qualitative and quantitative approaches) with a practical purpose and analytical-exploratory nature, in order to analyze information; FAHP method in ArcGIS and PROMETHEE method were used. In addition, the statistical population of the research includes managers, city officials, and academic elites. The sample size of managers and officials was determined using Cohen's method at the 95% confidence level, 90 people, and the method of accessing them is based on the snowball method. The size of the sample of academic elites is also determined based on the targeted Delphi sampling method of 14 people. The findings of the research show that the peripheral and central areas of the city have the highest vulnerability potential. Meanwhile, regions 10 and 1 with net flow of -0.454 and -0.527 are considered among the areas with high vulnerability to earthquakes. Among the factors affecting the vulnerability of these areas, we can mention the proximity to the fault, wear and tear of the tissues, distance from the aid centers, high density and the lack of elasticity of the roads. For this purpose, a systemic and integrated approach is needed in order to be able to recover and empower the community, and in this regard, it is necessary to pay attention to the pre-crisis stage in the dimensions of building retrofitting, improving access and

Keywords

Main Subjects


زلزله یکی از خطرناک‌ترین، مخرب‌ترین و غیرقابل پیشبینی‌ترین مخاطرات طبیعی به‌شمار می‌آید. از این‌رو، شناسایی مناطق آسیب‌پذیر شهرها به‌منظور افزایش ظرفیت مقابله با خطرات زلزله و مدیریت بحران این مخاطره ضروری است. در این راستا، پژوهش حاضر با هدف بررسی سطوح آسیب‌پذیر کلان‌شهر تبریز در برابر زلزله و ارائه‌ی راهکارهای مدیریت بحران (قبل از بحران) برای کاهش اثرات زلزله نگارش شده است. روش تحقیق در مطالعه‌ی حاضر آمیخته (ترکیبی از رویکردهای کیفی و کمی) با هدف کاربردی و ماهیت تحلیلی-اکتشافی می‌باشد که به‌منظور تجزیه و تحلیل اطلاعات و تهیه‌ی نقشه‌های رقومی از روش FAHP و نرم‌افزار ArcGIS و به‌منظور بررسی آسیب‌پذیری مناطق 10گانه‌ی شهر از روش PROMETHEE استفاده شده است. همچنین جامعه‌ی آماری تحقیق  شامل مدیران و مسئولان شهری و نخبگان دانشگاهی می‌باشد. حجم نمونه‌ی مدیران و مسئولان با استفاده از روش کوهن در سطح اطمینان 95 درصد، 90 نفر تعیین گردیده که نحوه‌ی دسترسی به آنها بر مبنای روش گلوله برفی می‌باشد. حجم نمونه‌ی نخبگان دانشگاهی نیز بر مبنای روش نمونه‌گیری دلفی هدفمند 14 نفر تعیین شده است. یافته‌های تحقیق نشان می‌دهد که مناطق حاشیه‌ای و مرکزی شهر بیشترین پتانسیل آسیب‌پذیری را دارا می‌باشند. در این بین مناطق 10 و 1 با کسب جریان خالص 454/0- و 527/0-، جزو مناطق با آسیب‌پذیری خیلی‌زیاد در برابر زلزله محسوب می‌شوند. از عوامل مؤثر بر آسیب‌پذیری این مناطق می‌توان به نزدیکی به گسل، فرسودگی بافت‌ها، دوری از مراکز امدادونجات، تراکم زیاد و همچنین عدم کشش‌پذیری معابر اشاره کرد. بدین منظور نیاز به رویکرد سیستمی و یکپارچه به‌منظور بازگشت‌پذیری و توانمندسازی اجتماع لازم بوده و در این راستا توجه به مرحله‌ی قبل از بحران در ابعاد مقاوم‌سازی ابنیه، ارتقاء دسترسی‌ها و تهیه‌ی طرح‌های موضعی به تفکیک محلات با تأکید بر محلات آسیب‌پذیر ضروری می‌باشد.

Esmailpour, Marzieh; Lalepour, Manijeh and Mamghani, Samaneh (2013). Assessing the vulnerability of Tabriz housing to earthquake hazards (case study: District 10 of the municipality). Geography and Planning, 26(82), 27-48. [In Persian]
Pourmohammadi, Mohammad Reza and Karami, Mohammad Reza. (2014). Combining the Kernel Model (KDE) and the AHP Model in Earthquake Risk Assessment in Marginal and Deteriorated Urban Contexts with the Help of Geographic Information System (GIS), Case Study of Districts One and Five of Tabriz City. Geography and Planning, 18(50), 55-88. [In Persian]
Jozi Khamsaloei, Ali; Taghvaei, Masoud. (2019), Vulnerability Analysis and Prioritization of Historical Land Uses of Isfahan Metropolitan City in Crisis Management and Emergency Evacuation, Geography, 17(63), 123-137. [In Persian]
Habibi, Kiyomars; Ezzati, Mohammad; Torabi, Kamal; Ezzatpanah, Bakhtiar. (2016), Investigating the vulnerability of cities to earthquakes using the MIHWP model (case study of Tabriz region 10), Geography and Planning, 20(58), 101-118. [In Persian]
Khedmatzadeh, Ali; Mousavi, Mirnajaf and Yousefzadeh, Ardeshir. (2000). Analysis of urban vulnerability indicators with an earthquake crisis management approach (case study: Urmia city). Human Settlement Planning Studies, 16(54), 43-62. [In Persian]
Roustaei, Shahram (2011), Tabriz Fault Hazard Zoning for Different Urban Land Uses, Geography and Development, Volume 9, Issue 21, pp. 41-27. [In Persian]
Qaedrahmati, Safar and Aziminia, Babak (2017). Assessment of density and its relationship with seismic vulnerability (Case study: District 4 of Tehran Municipality). Geography and Planning, 21(61), 279-298. [In Persian]
Ghanbari, Abolfazl, Saleki Maleki, Mohammad Ali, Ghasemi, Masoumeh (2013), Zoning the vulnerability of cities to earthquake risk (Case study: Tabriz city), Geography and Environmental Hazards, Volume 2, Issue 5, pp. 21-35. [In Persian]
Valdbeigi, Borhan-eddin; Pourheidari, Gholamreza. (2013), Crisis Planning. Tehran: Arvij Iranian Company Publications, Iranian Crisis Management Scientific Association.[In Persian]
Ainuddin, S., & Routray, J. K. (2012). Community resilience framework for an earthquake prone area in Baluchistan. International Journal of Disaster Risk Reduction, 2, 25-36.
Amideo, A. E., Scaparra, M. P., & Kotiadis, K. (2018). Optimising shelter location and evacuation routing operations: The critical issues. European. Journal of Operational Research, 279(2), 279-295.
Andreassen, N., Borch, O. J., Kuznetsova, S., & Markov, S. (2018). Emergency Management in Maritime Mass Rescue Operations: The Case of the High Arctic. In Sustainable Shipping in a Changing Arctic, Springer, Cham, 359-381.
Andrulis, D.P., Siddiqui, N.J., & Purtle, J.P. (2011). Integrating racially and ethnically diverse communities into planning for disasters: the California experience. Disaster Medicine and Public Health Preparedness, 5(5), 227–234.
Babic. Z., & Plazibat. N. (1998). Ranking of enterprises based on multicriterial analysis. International Journal of Production Economics, 56(57), 29-35.
Banica, A., Rosu, L., Muntele, I., & Grozavu, A. (2017). Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania). Sustainability, 9(2), 270.
Behzadian, M., & Pirdashti, M. (2009). Selection of the Best Module Design for Ultrafiltration (UF) Membrane in Dairy Industry: An Application of AHP and PROMETHEE. International Journal of Engineering, 3(4), 126-142.
Brans. J.P. (1996). The space of freedom of the decision maker modeling the human brain. European Journal Operational Research, 92, 593-602.
Brans. J.P., & Mareschal, B. (1994). The PROMCALE- GAIA decision support system for multicriteria decision aid. Decision Support Systems, 12(5), 297- 310.
Brusa, E., Chesi, C., & Torre, S.D. (2023). Securing the church of Madonna del Sole during the emergency phase of 2016 earthquake: interoperability of different actors as an instrument for reducing seismic risk of damaged built heritage. Procedia Structural Integrity, 44, 275–282.
Cas, A. G., Frankenberg, E., Suriastini, W., & Thomas, D. (2014). The impact of parental death on child well-being: evidence from the Indian Ocean tsunami. Demography, 51(2), 437-457.
Chen, T.L., & Lin, Z.H. (2021). Impact of land use types on the spatial heterogeneity of extreme heat environments in a metropolitan area. Sustainable Cities and Society, 72, 1-11.
Cremen, G., Bozzoni, F., Pistorio, S., & Galasso, C. (2022). Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering & System Safety, 218, 1-13.
Danielsson, E. (2016). Following routines: a challenge in cross-sectorial collaboration. Journal of Contingencies and Crisis Management, 24(1), 36–45.
Davis, I., & Izadkhah, Y. (2006). Building resilient urban communities. Article from OHI, 31(1), 11-21.
Deverell, E., Alvinius, A., & Hede, S. (2019). Horizontal collaboration in crisis management: an experimental study of the duty officer function in three public agencies. Risk, Hazards & Crisis in Public Policy, 10(4), 484–508.
Dong, L., & Shan. J. (2013). A Comprehensive Review of Earthquake Induced Building Damage Detection with Remote Sensing Techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 85-99.
Eriksson, K. (2023). Organisational learning without fire? Risk analyses as a basis for developing crisis management capabilities. Safety Science, 163, 1-8.
Heilig, G.K. (2011). World Urbanization Prospects: The 2011 Revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section: New York, NY, USA.
Huang, G., Li, D., Zhu, X., & Zhu, J. (2021). Influencing factors and their influencing mechanisms on urban resilience in China. Sustainable Cities and Society, 74, 1-11.
Jaiswal, K., & Wald, D. (2010). An empirical model for global earthquake fatality estimation. Earthquake Spectra, 26(4), 1017-1037.
Kapucu, N., Ge, Y., Martín, Y., & Williamson, Z. (2022). Urban resilience for building a sustainable and safe environment. Urban Governance, 1, 10–16.
Leeneer, I., & Pastijn, H. (2002). Selecting land mine detection strategies by means of outranking MCDM techniques. European Journal Operational Reasearch, 139, 327-338.
Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and urban planning, 147, 38-49.
Mirzaei, H., Yavar, B., & Mirtaheri, M. (2008). Lessons learn from disaster management in sistan. Drough along the world 7 intrnational pora, davos. Switzerland.
Moerschell, L., & Novak, S.S. (2020). Managing crisis in a university setting: the challenge of alignment. Journal of Contingencies and Crisis Management, 28(1), 30–40.
O’Brien, K., Sygna L., & Haugen, J. E. (2004). Vulnerable or Resilient? A Multi-Scale Assessment of Climate Impacts and Vulnerability in Norway. Climatic change, 64 (1-2), 193-225.
Olsen, M., Oskarsson, P-A., Jallberg, N., Granasen, M., & Nordstrom, J. (2023). Exploring collaborative crisis management: A model of essential capabilities. Safety Science, 162, 1-13.
Oscarsson, O. (2022). Crisis-as-practice: Conceptualizing the role of everyday work practices in crisis management. International Journal of Disaster Risk Reduction, 83, 1-10.
Paton, D., & Johnston, D. (2017). Disaster resilience: an integrated approach. Charles C Thomas Publisher.
Pitidis, V., Tapete, D., Coaffee, J., Kapetas, L., & Porto de Albuquerque, J. (2018). Understanding the implementation challenges of urban resilience policies: investigating the influence of urban geological risk in Thessaloniki, Greece. Sustainability, 10(10), 3573.
Pribadi, K.S., Abduh, M., Wirahadikusumah, R.D., Hanifa, N.R., Irsyam, M., Kusumaningrum, P., & Puri, E. (2021). Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia. International Journal of Disaster Risk Reduction, 64, 1-14.
Roth, M. (2018). A resilient community is one that includes and protects everyone. Bulletin of the Atomic Scientists, 71(2), 91–94,
Spaans, M., & Waterhout, B. (2017). Building up resilience in cities worldwide–rotterdam as participant in the 100 Resilient Cities Programme. Cities 61, 109–116.
Tang, A., & Wen, A. (2009). An intelligent simulation system for earthquake disaster assessment. Computers & Geosciences, 35(5), 871-879.
Wiedmer, R., Rogers, Z.S., Polyviou, M., Mena, C., & Chae, S. (2021). The dark and bright sides of complexity: a dual perspective on supply network resilience. Journal of Business Logistics, 42(3), 336–359.
Xu, J., Dai, J., Rao, R., & Xie, H. (2016). The association between exposure and psychological health in earthquake survivors from the Longmen Shan Fault area: the mediating effect of risk perception. BMC public health, 16(1), 417-429.
Yates, D., & Paquette, S. (2011). Emergency knowledge management social media technologies: A case study of the 2010 Haitian earthquake. International Journal of Information Management, 31(1), 6-13.
Zhang, P., Zhang, L., Chang, Y., Xu, M., Hao, Y., Liang, S., Liu, G., Yang, Z., & Wang, C. (2019). Food-energy-water (FEW) nexus for urban sustainability: a comprehensive review. Resources, Conservation and Recycling, 142, 215–224.