Comparative Analysis of Building Energy Consumption in Various Cities in Iran under the Influence of Climate Change

Document Type : Research Paper

Authors

1 University of Tabriz

2 The University of Tabriz

3 Academic member at the University of Tabriz

4 CLIMATOLOGY DEPT,UNIVERSITY OF TABRIZ IRAN

10.22034/gp.2024.61175.3250

Abstract

This article investigates the impact of climate change on energy consumption in residential buildings across various Iranian cities over the next 70 years.
To achieve this, climatic data for Tehran, Tabriz, Isfahan, Mashhad, and Kermanshah were generated using Meteonorm 8 software based on existing ten-year climatic data. Following the identification of prevalent residential building types in Iran, a representative sample was selected, and energy simulations were conducted using Design Builder 7.0.0.096 software for the years 2030, 2060, and 2090 in the aforementioned cities.
The results indicated a projected increase in cooling energy demand across all cities in the coming years. Tehran exhibited the most significant changes in annual heating energy, with a projected decrease of 37% in 2060 and 66.64% in 2090 compared to 2030. Tabriz experienced the largest annual increase in cooling energy, with a rise of 37.53% in the first three decades and 75.43% in the subsequent three decades. Overall, projected annual cooling energy changes ranged from 21.36% to 37.53% by 2060 and 44.14% to 75.43% by 2090 across these cities.

Tabriz had the highest annual energy consumption, while Kermanshah had the lowest. Additionally, Tabriz exhibited the highest heating energy consumption, whereas Tehran had the highest cooling energy demand annually. Regarding carbon dioxide emissions, Tehran recorded the highest levels during 2030, 2060, and 2090, with Isfahan showing the most substantial increase in emissions over the seventy-year period. Statistical analyses revealed a significant relationship between temperature changes and time across all cities. However, no significant relationship was found between time and energy consumption or carbon dioxide emissions in these cities. In conclusion, this study highlights the anticipated changes in energy consumption and carbon dioxide emissions in residential buildings across Iranian cities due to climate change.

Keywords

Main Subjects


تغییرات اقلیمی چالش­های مهمی برای مصرف انرژی در ساختمان­های مسکونی در سراسر جهان ایجاد می­کنند. هدف این مقاله بررسی تاثیر تغییرات اقلیمی بر مصرف انرژی ساختمان­های مسکونی طی هفتاد سال آینده در شهرهای مختلف ایران می­باشد.

در این راستا، داده­های اقلیمی شهرهای تهران، تبریز، اصفهان، مشهد و کرمانشاه با استفاده از نرم ­افزار Meteonorm 8 برای هفتاد سال آینده  بر اساس داده­های اقلیمی ده ساله موجود تولید شد. پس از شناسایی تیپ غالب ساختمان­های مسکونی در ایران، یک نمونه انتخاب و شبیه­ سازی­های انرژی با استفاده از نرم­افزارDesign Builder 7.0.0.096 برای پنج شهر مذکور در سال­های 2030، 2060 و 2090 انجام شد. نتایج نشان داد که طی سال­های آینده، انرژی سرمایشی موردنیاز ساختمان در تمامی شهرها افزایش خواهدیافت. از میان پنج شهر مطالعه­شده، بیشترین تغییرات انرژی گرمایشی سالانه در شهر تهران مشاهده گردید. در این شهر مقدار انرژی گرمایشی در سال 2060 و 2090 نسبت به سال 2030 به ترتیب به میزان 37 درصد و 64/66 درصد کاهش خواهدیافت. بیشترین افزایش انرژی سرمایشی سالانه در شهر تبریز مشاهده گردید؛ به­طوریکه در طی سه دهه اول، انرژی سرمایشی سالانه به میزان 53/37 درصد و در سه دهه دوم به میزان 43/75 درصد افزایش خواهد یافت. در مجموع مقدار تغییرات انرژی سرمایشی سالانه در این پنج شهر تا سال 2060 در بازه 53/37- 36/21 درصد و تا سال 2090 در بازه 43/75- 14/44 درصد خواهد بود.

بیشترین انرژی مصرفی سالانه در شهر تبریز، کمترین آن در شهر کرمانشاه، بالاترین مقادیر انرژی گرمایشی مصرفی متعلق به شهر تبریز و بالاترین انرژی سرمایشی سالانه مربوط به شهر تهران می­باشد. همچنین بالاترین مقادیر گاز دی­اکسیدکربن منتشر شده در طی سال­های 2030، 2060 و 2090 مربوط به شهر تهران و بیشترین افزایش انتشار این گاز در طی هفتاد سال آینده مربوط به شهر اصفهان می­باشد.

Abbasizade, F., Abbaspour, M., Soltanieh, M., & Haj Mulla kani, A. (2021). Climate change and its impact on energy consumption in buildings. Journal of Environmental Science and Technology  (Accepted Manuscript).   (In Persian)
Andreu, V., Aparicio, C., Martínez Ibernón, A., & Vivancos, J.-L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165, 63–74. https://doi.org/10. 1016/j.energy.2018.09.015
ANSI/ASHRAE Standard 55-2013, A. (2013). Thermal environmental conditions for human occupancy.
Attia, S., & Gobin, C. (2020). Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building. Energies, 13 (20),  https://doi.org/10.3390/en13205357
Baglivo, C., Congedo, P. M., Murrone, G., & Lezzi, D. (2022). Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change. Energy, 238, 121641. https://doi.org/https://doi.org/10.1016/j.energy.2021.121641
Bardhan, R., Debnath, R., Gama, J., & Vijay, U. (2020). REST framework: A modelling approach towards cooling energy stress mitigation plans for future cities in warming Global South. Sustainable Cities and Society, 61, 102315. https://doi.org/https://doi.org/10. 1016/j.scs. 2020.102315
Cellura, M., Guarino, F., Longo, S., & Tumminia, G. (2018). Climate change and the building sector: Modelling and energy implications to an office building in southern Europe. Energy for Sustainable Development, 45, 46–65. https://doi.org/https://doi.org/10.1016/j.esd.2018.05.001
Chen, Yixing, Ren, Z., Peng, Z., Yang, J., Chen, Z., & Deng, Z. (2023). Impacts of climate change and building energy efficiency improvement on city-scale building energy consumption. Journal of Building Engineering, 78, 107646.
     https://doi.org/https://doi.org/10. 1016/j.jobe.2023.107646
Chen, Yuehao, Li, M., Xiong, M., Cao, J., & Li, J. (2018). Future Climate Change on Energy Consumption of Office Buildings in Different Climate Zones of China. Polish Journal of Environmental Studies, 27, 45–53. https://api.semanticscholar.org/CorpusID:54599234
Chow, D. H. C., & Levermore, G. (2010). The effects of future climate change on heating and cooling demands in office buildings in the UK. Building Services Engineering Research and Technology, 31, 307–323. https://doi.org/10.1177/0143624410371284
D’Agostino, D., Tzeiranaki, S. T., Zangheri, P., & Bertoldi, P. (2021). Assessing Nearly Zero Energy Buildings (NZEBs) development in Europe. Energy Strategy Reviews, 36, 100680. https://doi.org/https://doi.org/10.1016/j.esr.2021.100680
Dino, I. G., & Meral Akgül, C. (2019). Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort. Renewable Energy, 141, 828–846. https://doi.org/https://doi.org/10.1016/j.renene. 2019.03.150
Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225,  110322. https://doi.org/https://doi.org/10.1016/j.enbuild. 2020.110322
Flores Larsen, S., Filippín, C., & Barea, G. (2018). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184. https://doi.org/10.1016/j.enbuild.2018.12.015
Flores Larsen, S., Filippín, C., & Barea, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184, 216–229. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.12.015
Jafarpur, P., & Berardi, U. (2021). Effects of climate changes on building energy demand and thermal comfort in Canadian office buildings adopting different temperature setpoints. Journal of Building Engineering, 42, 102725. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102725
Li, H., Ren, H., & Wu, M. (2021). The impact of climate change on energy performance of a residential building in Hong Kong using typical meteorological year datasets. Energy and Buildings, 238, 110957.
Li, J., Zhai, Z., Li, H., Ding, Y., & Chen, S. (2024). Climate change’s effects on the amount of energy used for cooling in hot, humid office buildings and the solutions. Journal of Cleaner Production, 442, 140967. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.140967
Li, M., Cao, J., Xiong, M., Li, J., Feng, X., & Meng, F. (2018). Different responses of cooling energy consumption in office buildings to climatic change in major climate zones of China. Energy and Buildings, 173, 38–44. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.05.037
Maduta, C., Melica, G., D’Agostino, D., & Bertoldi, P. (2022). Towards a decarbonised building stock by 2050: The meaning and the role of zero emission buildings (ZEBs) in Europe. Energy Strategy Reviews, 44, 101009. https://doi.org/https://doi.org/10.1016/j.esr.2022.101009
Meng, F., Li, M., Cao, J., Li, J., Xiong, M., Feng, X., & Ren, G. (2018). The effects of climate change on heating energy consumption of office buildings in different climate zones in China. Theoretical and Applied Climatology, 133. https://doi.org/10.1007/s00704-017-2206-6
Morewood, J. (2023). Building energy performance monitoring through the lens of data quality: A review. Energy and Buildings, 279, 112701. https://doi.org/https://doi.org/10.1016/j. enbuild.2022.112701
Rodrigues, E., Fereidani, N. A., Fernandes, M. S., & Gaspar, A. R. (2023). Climate change and ideal thermal transmittance of residential buildings in Iran. Journal of Building Engineering, 74, 106919. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106919
Troup, L., Eckelman, M. J., & Fannon, D. (2019). Simulating future energy consumption in office buildings using an ensemble of morphed climate data. Applied Energy, 255, 113821. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113821
Wang, C., Wang, Z.-H., Kaloush, K. E., & Shacat, J. (2021). Cool pavements for urban heat island mitigation: A synthetic review. Renewable and Sustainable Energy Reviews, 146, 111171. https://doi.org/https://doi.org/10.1016/j.rser.2021.111171
Wang, L., Liu, X., & Brown, H. (2017). Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy and Buildings, 157, 218–226. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.01.007
Yau, Y. H., & Hasbi, S. (2017). A Comprehensive Case Study of Climate Change Impacts on the Cooling Load in an Air-Conditioned Office Building in Malaysia. Energy Procedia, 143, 295–300. https://doi.org/https://doi.org/10.1016/j.egypro.2017.12.687
Yuan, J., Jiao, Z., Xiao, X., Emura, K., & Farnham, C. (2024). Impact of future climate change on energy consumption in residential buildings: A case study for representative cities in Japan. Energy Reports, 11, 1675–1692. https://doi.org/https://doi.org/10.1016/j.egyr.2024.01.042
Zomorodian, Z. S., & Tahsildoost, M. (2016). Validation of Energy Simulation Programs: An Empirical and Comparative Approach. NECjournals, 18(4), 0. http://necjournals.ir/article-1-803-en.html
Zou, Y., Xiang, K., Zhan, Q., & Li, Z. (2021). A simulation-based method to predict the life cycle energy performance of residential buildings in different climate zones of China. Building and Environment, 193, 107663. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107663
عباسی‌زاده، ف.، عباسپور، م.، سلطانیه، م.، و حاج ملاکانی، ع. (2021). تغییرات اقلیمی و تأثیر آن بر مصرف انرژی در ساختمان‌ها. مجله علوم و فناوری محیط زیست. https://doi.org/10.22034/jest.2021.55451.5166.