Evaluating the impact of city form indicators on the pollution of Arak Metropolis

Document Type : Research Paper

Authors

1 Department of Geography and Urban Planning, University of Mazandaran

2 Scientific member

10.22034/gp.2024.60218.3229

Abstract

Today, air pollution of large cities has caused major crises in economic, social, environmental and physical development. So that this issue has become the first priority for urban planners in order to curb the problem. Investigating the effects of urban form on air quality has been considered in both experimental and theoretical research. Arak metropolis is unhealthy especially for vulnerable groups due to the presence of many sources of air pollution in more than half of the days of the year and now it is one of the eight polluted cities in the country. The present study attempted to evaluate the impact of city form indicators on the pollution of the city. The research results showed; There has been a significant relationship between the city form index and the dependent variable (air pollution index) at the 95% level. So that the R2 value obtained from the spatial analysis of the city form index on SO2, showed 72% and the influence of the city form on the production of this pollutant. The intensity of the effect is greater in zones 2 and 3 of Arak city. This study explored the regional form and air pollution in a city where the concentration of industrial plants exacerbated environmental situation. So urban planning and policies should be formulated in accordance with the city function and industrial structure of Arak metropolis.

Keywords

Main Subjects


بر اساس آمار سازمان ملل خسارت ناشی از آلودگی هوا در ایران تا سال 2008 برابر 8 میلیارد دلار بوده ، که این خسارت‌ها تا سال 2014 به 11 میلیارد دلار رسیده و تا سال 2019 به 15 میلیارد دلار رسید. همچنین کلان‌شهر اراک به دلیل وجود منابع زیاد انتشار آلودگی هوا در بیشتر سال‌ها بیش از 50 درصد روزها ناسالم می‌باشد و هم‌اکنون جزء 8 شهر آلوده کشور است. لذا هدف تحقیق حاضر سنجش و ارزیابی تأثیر شاخص‌های فرم شهر بر آلودگی کلان‌شهر اراک است. داده‌ها و اطلاعات مورد نیاز تحقیق به دو روش کتابخانه‌ای ( مطالعه اسناد، طرح‌ها، مقالات و ...) و مراجعه به سازمان‌های مرتبط (شهرداری، سازمان محیط‌زیست و...) جمع‌آوری‌شده است. جهت تجزیه و تحلیل داده‌ها از نرم‌افزار GIS، مدل رگرسیون GWR و مدل Moran استفاده‌شده است. نتایج تحقیق نشان داد؛ بین شاخص فرم شهر و متغیر وابسته (شاخص آلودگی هوا) ارتباط معناداری در سطح 95% برقرار است. به طوری‌که مقدار R2  به دست آمده از تحلیل فضایی شاخص فرم شهر بر گاز SO2 عدد 72% را نشان می‌دهد و این مقدار نشان دهنده اثرگذاری فرم شهر بر تولید این آلاینده است. البته شدت اثرگذاری در مناطق 2و3 شهر اراک بیشتر است. همچنین R2 به دست آمده برای متغیر NO برابر است با 79% که این آمار نشان دهنده رابطه فضایی در سطحی بالا بین متغیر مستقل (فرم شهر) و متغیر وابسته برقرار است و در منطقه 1 شهر اراک تاثیرگذاری بالای این رابطه بیش از سایر مناطق شهر اراک است. تحلیل رابطه فضایی تاثیر فرم شهر بر تولید گاز O3 آماره R2 عدد85% را نشان داده است که این مقدار به مانند سایر متغیرها نشان از سطح بالای رابطه فضایی متغیر مستقل و O3 است. در منطقه 1،2، 3 آلاینده‌ها دارای بیشترین میزان تجمع و رابطه با فرم شهر هستند که از دلایل این موضوع؛ وجود کارخانه های صنعتی ماشین سازی، کارخانه آلومینیوم و وجود نیروگاه پتروشیمی شازند است. در نهایت با توجه به نتایج پیشنهادات زیر ارائه می‌گردد؛ جلوگیری از ساخت وساز مسکونی و تجاری در مناطق جنوب غربی به دلیل وجود شرکت های تولید کننده آلاینده‌ها، توزیع مناسب کاربریها ودر نتیجه تخلیه فشار ترافیکی.

Agrawal, G., Mohanb, D., and Rahmanb H., (2021). Ambient air pollution in selected small cities in India: Observed trends and future challenges. IATSS Research. 45(1), 19-30.
Akande, A., Cabral, P., Gomes, P., & Casteleyn, S. (2019). The Lisbon ranking for smart sustainable cities in Europe. Sustainable Cities and Society, 44, 475-487.
Block, M.L., Elder, A., Auten, R.L., et al., (2012). The outdoor air pollution and brain health workshop. Neurotoxicology. 33 (5), 972–984. https://doi.org/10.1016/j. neuro.2012.08.014.
Chattopadhay, S. and Chattopadhay, G. (2012). Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis, Pure Appl. Geophys. 169, 1891–1908.
Clark, L. P., Millet, D. B., & Marshall, J. D. (2011). Air quality and urban form in US urban areas: Evidence from regulatory monitors. Environmental Science & Technology, 45(16), 7028-7035.
Duchesne, J., Gutierrez, L. A., Carrière, I., Mura, T., Chen, J., Vienneau, D., & Mortamais, M. (2022). Exposure to ambient air pollution and cognitive decline: Results of the prospective Three-City cohort study. Environment International, 161, 107118.
Han, J., & Lee, J. (2023). A comparative study of air pollution levels in different urban street configurations in Pangyo New Town, South Korea. Building and Environment, 243, 110695.
Hankey, S., & Marshall, J. D. (2017). Urban form, air pollution, and health. Current environmental health reports, 4, 491-503.
Hu, J., Li, W., Gao, Y., Zhao, G., Jiang, Y., Wang, W.,& Chen, R. (2022). Fine particulate matter air pollution and subclinical cardiovascular outcomes: A longitudinal study in 15 Chinese cities. Environment International, 163, 107218.
Ji, H., Wang, J., Meng, B., Cao, Z., Yang, T., Zhi, G.,& Zhang, J. (2022). Research on adaption to air pollution in Chinese cities: Evidence from social media-based health sensing. Environmental Research, 210, 112762.
Kamble, T., & Bahadure, S. (2021). Investigating application of compact urban form in central Indian cities. Land Use Policy, 109, 105694.
Karatzas, K., Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simul Model Pract Theory, 15(10),1–9.
Li, Z., Wang, F., Kang, T., Wang, C., Chen, X., Miao, Z., & Zhang, H. (2022). Exploring differentiated impacts of socioeconomic factors and urban forms on city-level CO2 emissions in China: Spatial heterogeneity and varying importance levels. Sustainable Cities and Society, 84, 104028.
Lijie, H. Ying, L., Peipei, H., Hao, Zh.,(2019). Relationship between Air Pollution and Urban Forms: Evidence from Prefecture-Level Cities of the Yangtze River Basin. International Journal of Environmental Research and Public Health, doi: 10.3390/ijerph16183459.
Liu, X., Wang, M., Qiang, W., Wu, K., & Wang, X. (2020). Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Applied Energy, 261, 114409.
Miao, C., He, X., Xu, S., & Chen, W. (2023). Vertical distribution of air pollutants in an urban street canyon during winter air pollution episodes in Shenyang, China. Building and Environment, 110853.
Mohammadi, A. & Rahimi, S. (2013). The effects of land use patterns on the spatial distribution of air pollutants in Tehran. Journal of Urban Research and Planning, 4(14), 123-142.
Moustris, K.P., Ziomas I.C. and Paliatsos A.G. (2010). 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 using a neural Networks in Athens, Greece, Water Air Soil Pollut, 209, (pp. 29–43).
Ogle, J., Delparte, D., & Sanger, H. (2017). Quantifying the sustainability of urban growth and form through time: An algorithmic analysis of a city's development. Applied Geography, 88, 1-14.
Oshrieh, R., & Valipour, E. (2019). The role of urban density and morphology in the air pollution of Tehran metropolitan. Journal of Contemporary Urban Affairs, 3(1), 38-43.
Richmond-Bryant, J., & Reff, A. (2012). Air pollution retention within a complex of urban street canyons: A two-city comparison. Atmospheric Environment, 49, 24-32.
Sanchis-Marco, L., Montero, J. M., & Fernández-Avilés, G. (2022). An extended CAViaR model for early-warning of exceedances of the air pollution standards. The case of PM10 in the city of Madrid. Atmospheric Pollution Research, 13(4), 101355.
Singh, P., Kikon, N., Verma, P., (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing-based estimate. Sustain. Cities Soc. 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018.
Song, M., Zhao, X., & Shang, Y. (2020). The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resources, Conservation and Recycling, 157, 104777.
Song, Y., Zhang, Y., & Han, D. (2022). Deciphering built form complexity of Chinese cities through plot recognition: A case study of Nanjing, China. Frontiers of Architectural Research. 11( 5), 795-805.
Sousa, S.I.V., Martins, F.G., Alvim-Ferraz, M.C.M. and Pereira, M.C. (2007).Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations, Environmental Modelling and Software, 22, (pp. 97-103)
Tian, L., Liang, Y., & Zhang, B. (2017). Measuring residential and industrial land use mix in the peri-urban areas of China. Land Use Policy, 69, 427-438. doi.org/10.1016/j.landusepol.2017.09.036
U.S. EPA (2009). Technical Assistance Document for Reporting of Daily Air Quality-air Quality Index. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
Wang, Z., Chen, J., Zhou, C., Wang, S., & Li, M. (2022). The impacts of urban form on PM2. 5 concentrations: a regional analysis of cities in China from 2000 to 2015. Atmosphere, 13(6), 963.
WHO, (2018). Accessed March 16, 2021. https://www.who.int/health-topics/air-pollu tion#tab=tab_2.
Wu, J., Zheng, H., Zhe, F., Xie, W., Song, J., (2018). Study on the relationship between urbanization and fine particulate matter (PM2.5) concentration and its implication in China. J. Clean. Prod. 182, 872–882. https://doi.org/10.1016/j. jclepro.2018.02.060
www.who.int:// World health statistics 2020: monitoring health for the SDGs, sustainable development goals. Air pollution. (2020) Retrieved 16 March 2020, from https :// www.who.int/healt h-topic s/air-pollu tion#tab=tab_1
Yan, L., et al., (2019).  Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities, 2019. 91: p. 116-125.
Yuan, M., Song, Y., Hong, S., & Huang, Y. (2017). Evaluating the effects of compact growth on air quality in already-high-density cities with an integrated land use-transport-emission model: A case study of Xiamen, China. Habitat International, 69, 37-47.
Zangoui, H. and Asadollahfardi, G. (2018). Prediction of PM10 air pollution in Mashhad using MLP artificial neural networks and Markov chain model. Applied Research Journal of Geographical Sciences, 17(47), 39-59.
Zhang, L., You, S., Zhang, S., Yi, S., & Zhou, B. (2022). The effects of urbanization on air Pollution based on a spatial perspective: Evidence from China. Frontiers in Environmental Science, 2280.
Zhao, X., Zhou, W., Wu, T., & Han, L. (2022). The impacts of urban structure on PM2. 5 pollutions depend on city size and location. Environmental Pollution, 292, 118302.
Zhuo, Y., Zheng, H., Wu, C., Xu, Z., Li, G., & Yu, Z. (2019). Compatibility mix degree index: A novel measure to characterize urban land use mix pattern. Computers, Environment and Urban Systems, 75, 49-60.
Harris, N. (2023). The spatial, material and temporal dimensions of planning regulations: A legal geography perspective. Planning Theory & Practice, 24(1), 80-96. https://doi.org/10.1080/14649357.2022.2154824
Lauermann, J., & Mallak, K. (2023). Elite capture and urban geography: Analyzing geographies of privilege. Progress in Human Geography, 47(5), 645-663. https://doi.org/10.1177/03091325231186810
Liu, P., & Biljecki, F. (2022). A review of spatially-explicit GeoAI applications in Urban Geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. https://doi.org/10.1016/j.jag.2022.102936
Price, N. & Hawkins, K. (2002). Researching sexual and reproductive behaviour: A peer ethnographic approach. Social Science & Medicine, 55(8), 1325–1336. https://doi.org/10.1016/S0277-9536(01)00277-5
Pulido, L. (2018). Geographies of race and ethnicity III: Settler colonialism and non-native people of colour. Progress in Human Geography, 42(2), 309–318. https://doi.org/10.1177/0309132516686011
Pyke, K. D. (2010). What is internalised racial oppression and why don’t we study it? Acknowledging racism’s hidden injuries. Sociological Perspectives, 53(4), 551–572. https://doi.org/10.1525/sop.2010.53.4.551
Scheyvens, R., Wild, K. & Overton, J. (2003). International students pursuing postgraduate study in geography: Impediments to their learning experiences. Journal of Geography in Higher Education, 27(3), 309–323. https://doi.org/10.1080/0309826032000145070
Singh, S., Pykett, J., Kraftl, P., Guisse, A., Hodgson, E., Humelnicu, U. E., ... & Weightman, W. (2023). Understanding the ‘degree awarding gap’in geography, planning, geology and environmental sciences in UK higher education through peer research. Journal of Geography in Higher Education, 47(2), 227-247. https://doi.org/10.1080/03098265.2021.2007363
Usher, J. (2023). Conceptual framework for the participation of children in local area planning decision-making processes through primary geography education. Irish Educational Studies, 42(4), 583-597. https://doi.org/10.1080/03323315.2023.2260998
Xie, Y., Wang, Z., Fan, Y., Huang, J., & Xie, B. (2023). Application of GIS image system and remote sensing technology in physical geography land planning. Soft Computing, 27(12), 8403-8414. https://doi.org/10.1007/s00500-023-08128-6