Evaluating and modeling of spatiotemporal land use/land cover change impact on habitat quality (Case study: Amol City)

Document Type : Research Paper

Authors

1 University of Tabriz

2 Academic Member/ University of Tabriz

10.22034/gp.2024.61560.3259

Abstract

Evaluating and forecasting the changes in habitat quality (HQ) caused by land use/land cover (LULC) variations during urbanization is crucial for establishing a comprehensive ecological planning system and tackling the obstacles to global sustainable development. Over the last several decades, the biodiversity and environmental quality of the northern provinces have seen significant transformations as a result of population growth, urban development, climate change, and the rise in tourist activities. In this research, the LULC maps of Amol City were created for the years 2000 and 2020 using remote sensing data. Additionally, using the CA-Markov model, a simulation was conducted for the year 2035, considering two scenarios: Business-As-Usual (BAU) and Ecological Protection (EP). To assess the spatiotemporal changes occurring at HQ, we integrated the InVEST-HQ model with the CA-Markov model. The findings indicate a significant decline in overall HQ in the city of Amol between 2000 and 2020, mostly due to urbanization and agricultural expansion. Between 2020 and 2035, according to the BAU scenario, the landscape pattern and HQ will continue to deteriorate, following the previous trend of decline. The EP scenario, on the other hand, will be critical in stabilizing and supporting the area's HQ. This emphasizes the significance of preserving ecological spaces like forests and grasslands. The study's maps and findings may assist local managers and related organizations in implementing more efficient plans and solutions for the preservation of these ecosystems.

Keywords

Main Subjects


ارزیابی و پیش‌بینی تکامل کیفیت زیستگاه بر اساس تغییرات کاربری و پوشش اراضی تحت فرآیند شهرنشینی برای برنامه‌ریزی یک سیستم جامع اکولوژیکی و پرداختن به چالش‌های توسعه پایدار مهم است. در دهه­های گذشته، تنوع زیستی و کیفیت زیستگاه استان­های شمالی به دلیل رشد جمعیت، گسترش زمین‌های ساخته شده، تغییر اقلیم و افزایش فعالیت‌های گردشگری دستخوش تغییرات اساسی شده است. در این پژوهش، نقشه‌های کاربری و پوشش اراضی شهر آمل برای سال‌های 2000 و 2020 با استفاده از تصاویر ماهواره­ای لندست تهیه شد. علاوه بر این، با استفاده از مدل CA-Markov، یک شبیه‌سازی برای سال 2035 تحت دو سناریو پایه (BAU) و حافظت اکولوژیکی (EP) جهت پیش­بینی و ارزیابی کیفیت و تنوع زیستی منطقه مورد مطالعه در آینده صورت گرفت. برای ارزیابی تغییرات مکانی-زمانی رخ داده در کیفیت زیستگاه، مدل InVEST را با مدل CA-Markov یکپارچه شد. نتایج نشان می­دهد که کیفیت زیستگاه در محدوده­ی شهر آمل به طور قابل توجه­ای در طول دوره 2020-2000 کاهش یافته است که عمدتاً متأثر از گسترش شهرنشینی و توسعه کشاورزی است. در طول دوره 2035-2020 بر اساس سناریو BAU الگوی منظر و کیفیت زیستگاه همچنان روند کاهشی شدید قبلی را حفظ می­کند، در حالی که سناریو EP نقش کلیدی در تثبیت و حمایت از کیفیت و شاخص زیستگاه منطقه خواهد داشت، که اهمیت حفاظت از فضاهای اکولوژیکی مانند پوشش جنگلی و علفزار را برجسته می­کند. این تحقیق فراتر از ارائه شواهد مبنی بر اینکه گسترش شهری یک عامل کلیدی در تغییرات فوق‌الذکر است، اهمیت سنجش از دور را در مدل‌سازی اکولوژیکی به‌ویژه در مناطقی همچون ایران که اطلاعات و جمع آوری داده­ها محدود است را نشان می‌دهد. نتایج این تحقیق با ادغام تصاویر سنجش از دور با تکنیک‌های جدید در پایش تغییرات کاربری و پوشش اراضی اهمیت زیادی برای مدیران محلی و سازمان‌های مربوطه در تعیین راهکارهای موثرتری برای حافظت از زیستگاه‌ها و دستیابی به اهداف توسعه پایدار دارد.

Abdollahi, S., Zeilabi, E., & Xu, C. C. (2024). Habitat quality assessment based on local expert knowledge and landscape patterns for bird of prey species in Hamadan, Iran. Modeling Earth Systems and Environment, 10(2), 2051-2061. https://doi.org/10.1007/s40808-023-01896-y
Abdulrahman, A. I., & Ameen, S. A. (2020). Predicting Land use and land cover spatiotemporal changes utilizing CA-Markov model in Duhok district between 1999 and 2033. Academic Journal of Nawroz University, 9(4), 71-80. https://doi.org/10.25007/ajnu.v9n4a892
Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278, 123333. https://doi.org/10.1016/j.jclepro.2020.123333
Bahrami, A., Emadodin, I., Ranjbar Atashi, M., & Rudolf Bork, H. (2010). Land-use change and soil degradation: A case study, North of Iran. Agriculture and Biology Journal of North America, 1(4), 600-605.
Berta Aneseyee, A., Noszczyk, T., Soromessa, T., & Elias, E. (2020). The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sensing, 12(7), 1103. https://doi.org/10.3390/rs12071103
Chen, C., Liu, J., & Bi, L. (2023b). Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model. Forests, 14(2), 374. https://doi.org/10.3390/f14020374
Chen, R., Chen, Y., Lyulyov, O., & Pimonenko, T. (2023c). Interplay of urbanization and ecological environment: Coordinated development and drivers. Land, 12(7), 1459. https://doi.org/10.3390/land12071459
Chen, X., Yu, L., Cao, Y., Xu, Y., Zhao, Z., Zhuang, Y., ... & Gong, P. (2023a). Habitat quality dynamics in China's first group of national parks in recent four decades: Evidence from land use and land cover changes. Journal of Environmental Management, 325, 116505. https://doi.org/10.1016/j.jenvman.2022.116505
de Mendonça, M. J. C., Sachsida, A., & Loureiro, P. R. (2003). A study on the valuing of biodiversity: the case of three endangered species in Brazil. Ecological Economics, 46(1), 9-18. https://doi.org/10.1016/S0921-8009(03)00080-6
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., ... & Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), eaax3100. DOI:10.1126/science.aax3100
Dinguirard, M., & Slater, P. N. (1999). Calibration of space-multispectral imaging sensors: A review. Remote Sensing of Environment, 68(3), 194-205. https://doi.org/10.1016/S0034-4257(98)00111-4
Firozjaei, M. K., Fathololoumi, S., Kiavarz, M., Arsanjani, J. J., & Alavipanah, S. K. (2020). Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecological Indicators, 109, 105816. https://doi.org/10.1016/j.ecolind.2019.105816
Floreano, I. X., & de Moraes, L. A. F. (2021). Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environmental Monitoring and Assessment, 193(4), 239. https://doi.org/10.1007/s10661-021-09016-y
Franklin, C. M., Harper, K. A., & Clarke, M. J. (2021). Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Canadian Journal of Forest Research, 51(2), 274-282. https://doi.org/10.1139/cjfr-2020-0308
Fu, F., Deng, S., Wu, D., Liu, W., & Bai, Z. (2022). Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustainable Cities and Society, 80, 103760. https://doi.org/10.1016/j.scs.2022.103760
Ghalehteimouri, K. J., Shamsoddini, A., Mousavi, M. N., Ros, F. B. C., & Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6, 100399. https://doi.org/10.1016/j.envc.2021.100399
Hack, J., Molewijk, D., & Beißler, M. R. (2020). A conceptual approach to modeling the geospatial impact of typical urban threats on the habitat quality of river corridors. Remote Sensing, 12(8), 1345. https://doi.org/10.3390/rs12081345
He, N., Guo, W., Wang, H., Yu, L., Cheng, S., Huang, L., ... & Zhou, H. (2023). Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China. Land, 12(7), 1338. https://doi.org/10.3390/land12071338
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., ... & Zhang, X. (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 13(11), 5425-5464. https://doi.org/10.5194/gmd-13-5425-2020
IRIMO (2020). Islamic Republic of Iran Meteorological Organization. Tehran, Iran.
Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using Google Earth in Sadar watershed mojokerto regency. In IOP Conference Series: Earth and Environmental Science (Vol. 950, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1755-1315/950/1/012091
Kamran, J. G., Musa, K. K., & Sadegh, G. F. (2020). An investigation into urban development patterns with sprawl and other corresponding changes: A case study of Babol City. Journal of Urban Culture Research, 20, 26-43. https://doi.org/10.14456/jucr.2020.2
Karimi, H., Jafarnezhad, J., Khaledi, J., & Ahmadi, P. (2018). Monitoring and prediction of land use/land cover changes using CA-Markov model: a case study of Ravansar County in Iran. Arabian Journal of Geosciences, 11, 1-9. https://doi.org/10.1007/s12517-018-3940-5
Krause, A., Haverd, V., Poulter, B., Anthoni, P., Quesada, B., Rammig, A., & Arneth, A. (2019). Multimodel analysis of future land use and climate change impacts on ecosystem functioning. Earth's Future, 7(7), 833-851. https://doi.org/10.1029/2018EF001123
Lei, J., Chen, Y., Li, L., Chen, Z., Chen, X., Wu, T., & Li, Y. (2022). Spatiotemporal change of habitat quality in Hainan Island of China based on changes in land use. Ecological Indicators, 145, 109707. https://doi.org/10.1016/j.ecolind.2022.109707
Li, X., Liu, Z., Li, S., & Li, Y. (2022). Multi-scenario simulation analysis of land use impacts on habitat quality in Tianjin based on the PLUS model coupled with the InVEST model. Sustainability, 14(11), 6923. https://doi.org/10.3390/su14116923
Moreira, M., Fonseca, C., Vergílio, M., Calado, H., & Gil, A. (2018). Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal). Land use policy, 78, 637-649. https://doi.org/10.1016/j.landusepol.2018.07.015
Nie, Y., Zhang, X., Yang, Y., Liu, Z., He, C., Chen, X., & Lu, T. (2023). Assessing the impacts of historical and future land-use/cover change on habitat quality in the urbanizing Lhasa River Basin on the Tibetan Plateau. Ecological Indicators, 148, 110147. https://doi.org/10.1016/j.ecolind.2023.110147
Poncet, A. M., Knappenberger, T., Brodbeck, C., Fogle Jr, M., Shaw, J. N., & Ortiz, B. V. (2019). Multispectral UAS data accuracy for different radiometric calibration methods. Remote Sensing, 11(16), 1917. https://doi.org/10.3390/rs11161917
Pourmajidian, M. R., & Rahmani, A. (2009). The influence of single-tree selection cutting on silvicultural properties of a northern hardwood forest in Iran. American-Eurasian J Agric Environ Sci, 5(4), 526-532.
Sallustio, L., De Toni, A., Strollo, A., Di Febbraro, M., Gissi, E., Casella, L., ... & Marchetti, M. (2017). Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management, 201, 129-137. https://doi.org/10.1016/j.jenvman.2017.06.031
Shao, Z., Chen, R., Zhao, J., Xia, C. Y., He, Y., & Tang, F. (2022). Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on FLUS and InVEST models. Acta Ecol. Sin, 42, 9456-9469.
Shihab, T. H., Al-Hameedawi, A. N., & Hamza, A. M. (2020). Random forest (RF) and artificial neural network (ANN) algorithms for LULC mapping. Engineering and Technology Journal, 38(4A), 510-514. https://doi.org/10.30684/etj.v38i4A.399
Tang, F., Fu, M., Wang, L., & Zhang, P. (2020). Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecological Indicators, 117, 106719. https://doi.org/10.1016/j.ecolind.2020.106719
Tang, J., Zhou, L., Dang, X., Hu, F., Yuan, B., Yuan, Z., & Wei, L. (2023). Impacts and predictions of urban expansion on habitat quality in the densely populated areas: A case study of the Yellow River Basin, China. Ecological Indicators, 151, 110320. https://doi.org/10.1016/j.ecolind.2023.110320
Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 540, 63-70. https://doi.org/10.1016/j.scitotenv.2015.03.064
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., ... & Bond, W. J. (2015). Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience, 65(10), 1011-1018. https://doi.org/10.1093/biosci/biv118
Wang, B., & Cheng, W. (2022). Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sensing, 14(5), 1279. https://doi.org/10.3390/rs14051279
Wang, Q., Guan, Q., Lin, J., Luo, H., Tan, Z., & Ma, Y. (2021). Simulating land use/land cover change in an arid region with the coupling models. Ecological Indicators, 122, 107231. https://doi.org/10.1016/j.ecolind.2020.107231
Watson, K. B., Galford, G. L., Sonter, L. J., Koh, I., & Ricketts, T. H. (2019). Effects of human demand on conservation planning for biodiversity and ecosystem services. Conservation Biology, 33(4), 942-952. https://doi.org/10.1111/cobi.13276
Wei, Q., Abudureheman, M., Halike, A., Yao, K., Yao, L., Tang, H., & Tuheti, B. (2022). Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecological Indicators, 145, 109632. https://doi.org/10.1016/j.ecolind.2022.109632
Wei, W., Bao, Y., Wang, Z., Chen, X., Luo, Q., & Mo, Y. (2023). Response of habitat quality to urban spatial morphological structure in multi-mountainous city. Ecological Indicators, 146, 109877. https://doi.org/10.1016/j.ecolind.2023.109877
Wu, J., Li, X., Luo, Y., & Zhang, D. (2021). Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018. Scientific Reports, 11(1), 13981. https://doi.org/10.1038/s41598-021-92916-3
Xiao, P., Zhou, Y., Li, M., & Xu, J. (2023). Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environment, Development and Sustainability, 25(7), 6419-6448. https://doi.org/10.1007/s10668-022-02310-w
Xie, X., & Zhu, Q. (2023). Research on the Impact of Urban Expansion on Habitat Quality in Chengdu. Sustainability, 15(7), 6271. https://doi.org/10.3390/su15076271
Yang, Y. (2021). Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecological Indicators, 129, 107967. https://doi.org/10.1016/j.ecolind.2021.107967
Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. Journal of Environmental Management, 281, 111885. https://doi.org/10.1016/j.jenvman.2020.111885
Yousefi, S., Moradi, H. R., Keesstra, S., Pourghasemi, H. R., Navratil, O., & Hooke, J. (2019). Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran. Geocarto International, 34(3), 276-292. https://doi.org/10.1080/10106049.2017.1386722
Zhou, X., Liu, C., Xue, Y., Akbar, A., Jia, S., Zhou, Y., & Zeng, D. (2022). Radiometric calibration of a large-array commodity CMOS multispectral camera for UAV-borne remote sensing. International Journal of Applied Earth Observation and Geoinformation, 112, 102968. https://doi.org/10.1016/j.jag.2022.102968