Investigation of the Characteristics of the Cold Season Cyclogenesis in Different Phases of the Madden-Julian Oscillation in the Mediterranean Region.

Document Type : Research Paper

Authors

1 Ph.D. student of Climatology, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Professor of Climatology, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 Assistant professor of Water Engineering, Shahr-e Kord University, Department of Hydraulic Engineering, Shahr-e Kord, Iran.

10.22034/gp.2024.63576.3305

Abstract

To study the cyclogenesis within the Mediterranean region in different phases of Madden-Julian Oscillation (MJO) during the cold season (November, December, January, and February) between 1989 and 2020, MJO index and mean sea level pressure data from the European Centre for Medium-Term Atmospheric Prediction, ERA5 section were utilized. For visualizing the frequency, depth, and tracking characteristics of cyclogenesis, the University of Melbourne method was used. The results showed that the strongest cyclones in the region formed in phases 8, 6, and 7, respectively, with a pressure less than 994 hPa. In terms of the frequency of cyclogenesis and the core of cyclones in the region, the highest and the lowest amount of cyclogenesis were related to phase 7 and 1, respectively. The results showed that phases 6 and 7 have the strongest central pressures, whereas phases 1, 3, and 5 have the weakest central pressures of the MJO phases. Phase 2 has the lowest value of central pressure and the highest average pressure is related to phase 5. The tracking of cyclones that formed within the Mediterranean region showed that most of the paths that ended in the western regions of Iran were in phases 2 and 8, whereas in other phases, these tracks had a southwest to northwest direction. These situations were the case during phases 3, 4, 6 and 7, which caused most of the cyclones formed in the cold season of the year to affect most of the north-western regions of Iran.

Keywords

Main Subjects


در این مطالعه به‌منظور بررسی وضعیت چرخندزایی در فازهای مختلف مادن-جولیان در منطقه مدیترانه در دوره سرد سال از داده‌های شاخص مادن-جولیان (MJO) و داده‌های فشار تراز دریا مربوط به مرکز پیش‌بینی میان‌مدت جو اروپا بخش ERA5 بین سال‌های 1989 تا 2020 در دوره سرد سال استفاده شده است. ویژگی‌های چرخندزایی در سه بخش فراوانی، عمق و ردیابی چرخندها از الگوریتم تشخیص و مسیریابی چرخند دانشگاه ملبورن در چرخه­های کامل رخداد MJO در دوره مورد مطالعه به دست آمده و تحلیل شدند. نتایج نشان داد قوی‌ترین چرخند‌های منطقه به ترتیب در فازهای 8، 6 و 7 با فشاری کمتر از 994 هکتوپاسکال تشکیل شده‌اند. از نظر فراوانی چرخند‌ها در منطقه بیشترین و کمترین مقدار چرخندزایی به ترتیب مربوط به فاز 7 و فاز 1 رخداد MJO می‌باشد. نتایج حاصل از عمق فشار مرکزی چرخند‌ها نشان داد دو فاز 6 و 7 دارای قوی‌ترین و فازهای 1، 3 و 5 دارای ضعیف‌ترین چرخند‌ها در طی فازهای مادن-جولیان می‌باشند. فاز 2 کمترین مقدار فشار مرکزی را در هسته‌های چرخندی به خود اختصاص داده و بیشترین میانگین فشار نیز در چرخند‌های تولید شده در منطقه مربوط به فاز 5 است. مسیریابی چرخند‌های تشکیل شده در منطقه مدیترانه نشان داد که عمده مسیرهای ختم شده به مناطق غربی ایران در دو فاز 2 و 8 بوده و در سایر فازها مسیری جنوب غرب به شمال شرق به خود گرفته که این وضعیت در فازهای 3، 4، 6 و 7 سبب شده تا عمده چرخند‌های تشکیل شده در دوره سرد سال بیشتر مناطق شمال غرب ایران را متأثر سازد.

Aiyyer, A., & Molinari, J. (2008). MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. Journal of the Atmospheric Sciences, 65(8), 2691-2704.
Ammar, K., El-Metwally, M., Almazroui, M., & Abdel Wahab, M. M. (2014). A climatological analysis of Saharan cyclones. Climate dynamics43, 483-501.
Aragão, L., & Porcù, F. (2022). Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset. Climate Dynamics, 58(5), 1293-1310.
Bartholy, J., Pongrácz, R., & Pattantyús-Ábrahám, M. (2009). Analyzing the genesis, intensity, and tracks of western Mediterranean cyclones. Theoretical and Applied Climatology, 96, 133-144.
Berrington, A. H., Sakaeda, N., Dias, J., & Kiladis, G. N. (2022). Relationships between the Eastward Propagation of the Madden‐Julian Oscillation and Its Circulation Structure. Journal of Geophysical Research: Atmospheres, 127(16), e2021JD035806.
Du, D., Subramanian, A. C., Han, W., Chapman, W. E., Weiss, J. B., & Bradley, E. (2024). Increase in MJO predictability under global warming. Nature Climate Change, 14(1), 68-74.
Ferranti, L., Palmer, T. N., Molteni, F., & Klinker, E. (1990). Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47(18), 2177-2199.
Haertel, P. (2022). Kelvin and Rossby Wave Contributions to the Mechanisms of the Madden–Julian Oscillation. Geosciences, 12(9), 314. Haertel, Patrick. Kelvin and Rossby Wave Contributions to the Mechanisms of the Madden–Julian Oscillation. Geosciences 12, no. 9 (2022): 314.
Ilie, V. A., Croitoru, A. E., & Man, T. C. (2021). Mediterranean Cyclones Tracks in Europe with Special View over Romania (1985-2015). Scientific Research & Education in the Air Force-AFASES, 2021.
Knutson, T. R., & Weickmann, K. M. (1987). 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7), 1407-1436.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., & Hatzaki, M. (2011). Climatological aspects of explosive cyclones in the Mediterranean. International Journal of Climatology, 31(12): 1785-1802.
Lau, W. K. M., & Waliser, D. E. (2011). Intraseasonal variability in the atmosphere-ocean climate system. 2nd ed., 613 pp., Springer Science & Business Media, Heidelberg, Germany.
Liang, S., Wang, D., Ziegler, A. D., Li, L. Z., & Zeng, Z. (2022). Madden–Julian Oscillation-induced extreme rainfalls constrained by global warming mitigation. Npj Climate and Atmospheric Science, 5(1), 67.
Lim, E. P., & Simmonds, I. (2007). Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. Journal of Climate, 20(11), 2675-2690.
Lionello, P., Malanotte-Rizzoli, P., & Boscolo, R. (Eds.). (2006). Mediterranean climate variability. Elsevier.
Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the atmospheric sciences, 28(5), 702-708.
Madden, R. A., & Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the atmospheric sciences, 29(6), 1109-1123.
Madden, R. A., & Julian, P. R. (1994). Observations of the 40–50-day tropical oscillation—A review. Monthly Weather Review, 122(5), 814-837.
Miller, D. E., Gensini, V. A., & Barrett, B. S. (2022). Madden-Julian oscillation influences United States springtime tornado and hail frequency. Npj Climate and Atmospheric Science, 5(1), 37.
Mohammadi, R., Saligheh, M., Naserzadeh, M. H., & Akbari, M. (2020). Synoptic and dynamical analysis of the cyclonic occurrence of heavy rains during the cold period of western Iran. Journal of Meteorology and Atmospheric Science, 3(3), 224-241.
Pezza, A. B., Simmonds, I., & Renwick, J. A. (2007). Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. International Journal of Climatology, 27(11): 1403-1420.
Pinto, J. G., Spangehl, T., Ulbrich, U., & Speth, P. (2005). Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 14(6): 823-838.
Pohl, B., & Matthews, A. J. (2007). Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. Journal of Climate, 20(11), 2659-2674.
Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H., & Blender, R. (2008). Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Monthly Weather Review, 136(3): 880-897.
Romem, M., Ziv, B., & Saaroni, H. (2007). Scenarios in the development of Mediterranean cyclones. Advances in Geosciences, 12, 59-65.
Sena, A. C., Peings, Y., & Magnusdottir, G. (2022). Effect of the Quasi‐Biennial Oscillation on the Madden Julian Oscillation Teleconnections in the Southern Hemisphere. Geophysical Research Letters, 49(6), e2021GL096105.
Simmonds, I., Murray, R.J., & Leighton, R. (1999). A refinement of cyclone tracking methods with data from FROST. Australian Meteorological Magazine.
Suematsu, T., & Miura, H. (2022). Changes in the eastward movement speed of the Madden–Julian oscillation with fluctuation in the Walker circulation. Journal of Climate, 35(1), 211-225.
Tsuboi, A., & Takemi, T. (2014). The interannual relationship between MJO activity and tropical cyclone genesis in the Indian Ocean. Geosci Lett 1: 9. Doi: 10.1186.
Vitart, F., & Balmaseda, M. A. (2024). Sources of MJO teleconnection errors in the ECMWF extended‐range forecasts. Quarterly Journal of the Royal Meteorological Society, 150(761), 2028-2044.
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly weather review, 132(8): 1917-1932.
Zhang, C. (2005). Madden‐Jjulian oscillation. Reviews of Geophysics, 43(2).
Zhang, C. (2013). Madden–Julian oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94(12): 1849-1870.