Document Type : Research Paper

Authors

1 Geography and Urban Planning, University of Tabriz

2 Geography and urban planning

Abstract

Large earthquakes usually cause huge damages to human life. Street network vulnerability makes the rescue operation to encounter serious difficulties especially at the first 72 hours after the incident. Today, physical expansion and high density of great cities, due to no attention to hierarchical street network, narrow access roads, large distance from medical care centers and location at areas with high seismic risk, would lead to a perilous and unpredictable situation in case of the earthquake. Occurrence of earthquakes with large magnitude would destroy the functionality of street networks and cause large amount of casualties and major financial damages. In Tabriz city, the areas of first and fifth zones are equal to 3327 hectares. The area of first and fifth zones is over 2844 and 483 ha respectively. According to current estimates, the population of these zones is equal to over 458939 people. In this research using 12 indexes such as: land use, width of roads, height of buildings, street inclusion, population and construction density, buildings area, quality, materials and antiquity of building, access to medical centers, distance and proximity to major faults vulnerability degree of street networks in zones 1 and 5 of detailed plan of Tabriz against the earthquake is calculated through overlaying maps and data in combination with IHWP method and GIS. The article concludes that buildings alongside the streets with high population and building density, low building quality, far to rescue centers and high level of inclusion represent high rate of vulnerability, compared with other buildings. Also highways and streets with substantial width and low building and population density hold little values of vulnerability. By moving on from east to west of the zones, the vulnerability increases. This vulnerability of streets is in high level in the central zones. Therefore, the existing street networks in the center will be unable to perform their role at the case of occurrence of earthquake.

Keywords

ـ باغ­وند، اکبر و همکاران (1385)، «بررسی علل تنزل عملکرد شبکه حمل و نقل شهری پس از وقوع زلزله و راهکارهای مقابله با آن»، دومینسمینارساختوسازدرپایتخت پردیسدانشکده­­هایفنیدانشگاهتهران.
ـ ترابی، کمال (1388)، «بررسی نقش شبکه­های ارتباطی در کاهش اثرات ناشی از زلزله- مورد مطالعه: منطقه 6 شهرداری تهرانبا تأکید بر ناحیه 1»، پایان­نامه کارشناسی ارشد در رشته شهرسازی- برنامه­ریزی شهری و منطقه­ای دانشگاه علم و صنعت ایران.
ـ حبیبی، کیومرث (1389)، «پروژه کاربرد GIS در بهسازی و نوسازی بافت­های کهن شهری، وزارت راه و شهرسازی»، سازمان عمران و بهسازی شهری، تهران.
ـ حبیبی، کیومرث و همکاران (1387)، «تعیین عوامل ساختمانی موثر در آسیب­پذیری بافت کهن شهری زنجان با استفاده از GIS و FUZZY LOGIC» هنرهای زیبا، شماره 33، ص 27-36.
ـ حبیبی، کیومرث و دیگران (1388)، «امنیت شهری و GIS»، دانشگاه امام حسین، تهران.
ـ حبیبی، کیومرث (1385)، «ارزیابی سیاست­های توسعه کالبدی، بهسازی و نوسازی بافت­های کهن شهری با استفاده از GIS، پایان­نامه برای دریافت درجه دکتری در رشته جغرافیا و برنامه­ریزی شهری، دانشگاه تهران.
ـ مهندسان مشاور تهران پادیر (1388)، «مطالعات ریز پهنه‌بندی ژئوتکنیک لرزه‌ای شهر تبریز»، اداره کل راه و شهرسازی استان آذربایجاشرقی، تبریز، جلد سوم.
- Chang, E. Stephanie &Nojima, Nobuoto (1998), “Measuring Lifeline System Performance: Highway Transportation Systems in Recent Earthquakes”, Proc. of the 6th U.S. National Conference on Earthquake Engineering, Seattle, USA, Paper No. 70, 12p.
- Cova, T. & Johnson, J. (2003), “A Network Flow Model for Lane-Based Evacuation Routing”, Transportation Research, Part A, 37: 579-604.
- Husdal, J. (2006), “Transport Network Vulnerability: Which Terminology and Metrics Should We Use?” Paper Presented at the NECTAR Cluster 1 Seminar, Norway: 1-9.
- Minami, Masaaki et al (2003), “Street Network Planning for Disaster Prevention against Street Blockade,” Proceedings of the Eastern Asia Society for Transportation Studies, Vol.4, October, 2003, Page 1750-1756.
- Miriam, Holly & Shulman, Lea (2008), “Estimating Evaluation Vulnerability of Urban Transportation Systems Using GIS”, A Thesis Submitted to the Department of Geography In Conformity with the Requirements for the Degree of Master of Arts, Queen’s University Kingston, Ontario, Canada.
- Samadzadegan, F. & Zarrinpanjeh, N. (2008), “Earthquake Destruction Assessment of Urban Roads Network Using Satellite Imagery And Fuzzy Inference Systems”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part B8, Beijing, Page 409-414.
- Sohn, J. (2006), “Evaluating the Significance of Highway Network Links under the Flood Damage: An Accessibility Approach”, Transportation Research, Part A, 40: 491-506.
- Taylor, M.; Sekhar, S. & D’Este, G. (2006), “Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks”, Network Spatial Economy, 6: 267-291.
- Tsukaguchi H. & Li Y., (1999), “District and Local Distributor Network to Ensure Disaster-resilient Urban Planning”, Shanghai International Symposium on Urban Transportation Proceedings.
- Lee Y.L., Yeh K.Y., (2003), “Street Network Reliability Evaluation Following the Chi-chi Earthquake, The Network Reliability of Transport”, Proceedings of the 1st International Symposium on Transportation Network Reliability (INSTR), Edited by Michael G.H. Bell and Yasunori Iida, pp.273-288
- Liu, Bin et al (2003), “The Restoration Planning Of Road Network  In Earthquake Disasters”, Proceedings of the Eastern Asia Society for Transportation Studies, Vol.4, October, Page 526-539.