منابع
ـ علویپناه، کاظم (1389)، «کاربرد سنجش از دور در علوم زمین»، انتشارات دانشگاه تهران، چاپ سوم.
ـ فاطمی، ب.؛ رضایی، ی. (1391) ، «مبانی سنجش از دور»، انتشارات آزاده، چاپ سوم .
- Atkinson P.M., Tatnall, A.R.L., (1997), “Ne2ural Networks in Remote Sensing”, Int. J. Remote Sensing, Vol. 18, No. 4, pp. 699-709.
- Brian, W., Qi Chen, Z., Borge, M., (2011), “A comparison of classification techniques to support land cover and land use analysis in tropical coastal zone”, Applied Geography 31, 525-53.
- Chavez, p., (1996), “Image-based atmospheric corrections-Revisited and improved”, Photogramm, Eng. Remote Sensing, Vol. 62, pp. 1025–1036, Sept.
- Colby, J.D., (1991), “Topographic Normalization in Rugged Terrain”, Photogrammetric Engineering & Remote Sensing 57 (5), 531-537.
- Congalton, R.G., Green, K. (1999), “Assessing the accuracy of remotely sensed data: principles and practices”, Boca Raton: Lewis Publications.
- Fody, M.G., (1996), “Relating the Land-Cover Composition of Mixed Pixels to Artificial Neural Network Classification Output”, Photogrammetric Engineering & Remote Sensing, Vol. 62, No. 5, pp. 491-499.
- Foody, M.G., and Mathur, A. (2004)a. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines”. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335-1343.
- Gandini, M.L., & and Usunoff, E.J., (2004), “SCS curve number estimation using remote sensing NDVI in a GIS environmental”, Journal of Environmental Hydrology, (12), 168-179.
- Lu, D., & Weng, Q. (2007), “A survey of image classification methods and techniques for improving classification performance, International Journal of Remote Sensing, 28(5), 823-870.
- Nitze, A., Schulthess, B., Asche, H., (2012), “Comparison of Machine Learning Algorithms Random Forest, Artificial Neural Network and Sopport Vector Machine to Maximum Likelihood for Suporvised Crop Type Classification”, Proceedings of the 4th Geobia , May 7-9, Rio de Janeiro-Brazil. P. 035.
- Noori, R., Abdoli, M.A., Ameri A., and Jalili-Ghazizade, M., (2008), “Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad”, Environmental Progress and Sustainable Energy, 28 (2), 249-258.
- Rao, S., Sharma,A,.(2013). Cost Parameter Analysis and Comparison of Linear Kernel and Hellinger Kernel Mapping of SVM on Image Retrieval and Effects of Addition of Positive Images, International Journal of Computer Applications (0975-8887) Volume 73– No.2.
- Roy, P.S., Sharma, K.P., JAIN, A., (1996), “Stratification of density in dry deciduous forest using satellite remote sensing digital data-An approach based on spectral indices”, J. Biosci., Vol. 21, pp 723-734. © Printed in India.
- Srivastava, P.K., Han. D., Rico-Ramirez, M.A., Bray, M., Islam, T. (2012), “Selection of classification techniques for land use/land cover change investigation”, Advances in Space Research (50) 1250-1265.
- Shalkoff, R.J. (1997), “Artificial Neural Networks”, McGraw-Hill Companies Pub.
- Mantero P., Moser, G., Serpico, S.B., (2005), “Partially supervised classification of remote sensing images through SVM-based probability density estimation”, IEEE Trans. on Geoscience and Remote Sensing, Vol. 43, No. 3 , 559-570.
- Srivastava, D.K., Bhambhu, L., (2009), “Data classification using support vector machine”, Journal of Theoretical and Applied Information Technology, 1-7.
- Vapnik, V.N. (1999), “The Nature of Statistical Learning Theory”, 1-339, Second Edition. (New York: Springer-Verlag).
- Warner, T., (2005), “Hyperspherical Direction Cosine Change Vector Analysis”, International Journal of Remote Sensing, Vol, 26, pp.1201-1215.
- Yan, Y., (2003), “Object-based Classification of Remote Sensing Data for change detection”, www.elsevier.com.
- Zhu, G., Blumberg, D.G., (2002), “Classification using ASTER data and SVM algorithms: the case study of Beer Sheva”, Remote Sensing of Environment, 80(2), 233-240.
- landsat7.usgs.gov/Landsat8_Using_Product.php.
- http://www.gisagmaps.com/landsat-8-atco-guide.