ـ دهقانی، امیراحمد؛ پیری، مهدی؛ حسام، موسی؛ دهقانی، نوید (1389)، «تخمین تبخیر روزانه از تشت تبخیر با استفاده از سه شبکه عصبی پرسپترون چند لایه، تابع پایه شعاعی و المانی»، مجله پژوهشهای حفاظت آب و خاک، شماره دوم، جلد هفدهم، صص67-49.
ـ قربانی، محمدعلی، نقی پور، لیلا، کریمی، وحید، فرهودی، رضا (1392)، «آنالیز حساسیت پاراهای مؤثر بر غلظت ازن با استفاده از شبکه عصبی مصنوعی»، مجله سلامت و محیط، دوره ششم، شماره اول، صص 22-11.
-Irmak, S., Haman, D.Z. and Jones, J.W., (2002), “Evaluation of class A pance coefficients forestimating reference evapotranspiration in humidlocation”, Journal of Irrigation and Drain. Eng. ASCE, 128. pp: 153-159.
-Khanna, T., (1990), “Foundation of neural networks: Addison-Wesley Series in New Horizons in Technology”, 1sted. New York: Addison-Wesley”,
- Dayhoff, J.E. (1990) “Neural Network Principles”, 1sted. New York: Prentice-Hall International.
- Sudheer, K.P., Gosain, A.K., Mohana, R.D. and Saheb, S.M., (2002), “Modelling Evaporation Using an Artificial Neural Network Algorithm”, Hydrological Processes, 16, pp:3189-3202.
-Terzi, O. and Keskin, M.E., (2005), “Modeling of Daily Pan Evaporation”, Journal of Applied Sciences, 5, pp: 368-372.
-Kalteh, A.M., (2008), “Rainfall-Runoff Using Artificial Neural Networks (ANNs) and Understanding”, Caspian Journal of Environmental Science, 6(1), pp: 53-58.
-Najah, A.A., El-Shafie, A., Karim, O.A., and Jaafar, O., (2011), “Integrated versus isolated scenario forprediction dissolved oxygen atprogression of water quality monitoringstations”, Hydrology and Earth System Sciences Discussions, 8, pp: 6069-6112.
-Ghorbani, M.A., Khatibi, R., Hosseini, B., and Bilgili, M., (2013), “Relative importance of parameters affecting windspeed prediction using artificial neural networks”, Theoretical and Applied Climatology, 114, pp: 107–114.
-Haykin, S., “Neural Networks: A Comprehensive Foundation”, Second Ed. Prentice Hall, Upper Saddle River, New Jersey, (1999).
-Garson, G.D., (1991), “Interpreting neural network connection weights”, Artificial Intelligence Expert. 6, pp:47-51.
-Tang, Z. and Fishwick, P.A., (1993), “Feedforward neural nets as models for time 2 series forecasting”, ORSA J Comput, 5, pp: 374–385.
14- Wong, F.S., (1991). “Time series forecasting using back propagation neural network”, Neurocomputing; 2, 147–159.
-Lippmann, RP., (1987), “An introduction to computing with neural nets”, IEEE ASSP Magazine; April, pp: 4–22.