ـ پناهی جلودار، قربان (1379)، «تحلیلی بر روند شهرنشینی در مادر شهرهای ایران»، مورد نمونه شهر تبریز، رساله کارشناسی ارشد، دانشگاه تبریز.
-Alberti, M. (2005), “The effects of urban patterns on ecosystem function”. Int. Region. Sci. Rev. 28 (2), 168-192.
-Almeida, Cláudia Maria de, (2003), “Spatial dynamic modeling as a planning tool: Simulation of urban land use change in Bauru and Piracicaba (SP), Brazil”, A Thesis of the PhD Program in Remote Sensing, / C. M. Almeida. – São José dos Campos: INPE.
-Atkinson, P., & Tatnall, A. (1997), “Neural networks in remote sensing”, International Journal of Remote Sensing, 18(4), 699-709.
-Babaian, R., Miyashita, H., Evans, R., Eshenbach, A., &Ramimrez, E. (1997), “Early detection program for prostate cancer: results and identification of high-risk patient population”, Urology, 37(3), 193-197.
-Batty, M., P. Longley. (1994). “Fractal Cities: A Geometryof Form and Function”, (Academic Press, San Diego).
-Boutt, D.F., Hyndman, D.W., Pijanowski, B.C., & Long, D.T. (2001), “Identifying potential land use derived solute sources to streambaseflow using ground watermodel sand GIS”,. Groundwater, 39(1), 24-34.
-Bronstert, A., Niehoff, D., Bürger, G. (2002), “Effects of climate and land-use change on stormrunoff generation: present knowledge and modeling capabilities”, Hydrol.Process. 16, 509-529.
-Brown, D.G., Duh, J.D., &Drzyzga, S. (2000), “Estimating error in an analysis of forest fragmentation change using North American Landscape Characterization (NALC) Data”, Remote Sensing of Environment, 71, 106-117.
-Brown, D.G., Lusch, D.P., & Duda, K.A. (1998), “Supervised classification of glaciated landscape types using digital elevation data”, Geomorphology, 21(3-4), 233-250.
-Brown, D.G., Pijanowski, B.C., & Duh, J.D. (2001), “Modeling the relationships between land-use and land-cover on private lands in the Upper Midwest”, USA. Journal of Environmental Management, 59, 247-263.
-Cameron, I., Lyons, T.J., Kenworthy, J.R. (2004), “Trends in vehicle kilometres of travel in world cities, 1960-1990: underlying drivers and policy responses”m Transp. Policy 11, 287-298.
-Carlson, T.N. (2004), “Analysis and prediction of surface runoff in an urbanizing water-shed using satellite imagery”, J. Am. Water Resour, Assoc, 40 (4), 1087-1098.
-Drummond, S., Joshi, A., & Sudduth, K. (1998), “Application of neural networks: precision farming”, IEEE Transactions on Neural Networks, 211-215.
-Ewing, R., Pendall, R., Chen, D. (2002), “Measuring Sprawl and its Impact” Smart Growth America, Washington, D.C.
Fishman, M., Barr, Dean S., &Loick, W.J. (1991), “Using neural nets in market analysis”, Technical Analysis of Stocks & Commodities, 4, 18-21.
-Fukushima, K., Miyake, S., & Takayuki, G. (1983), “Neocognitron: a neural network model for a mechanism of visual pattern recognition, IEEE Transactions on Systems”, Man, and Cybernetics, SMC, 13(5), 826–834.
-Hasse, J., & Lathrop, R.G.A. (2003), “Housing-unit level approach to characterizing residential sprawl”, Photogrammetric Engineering & Remote Sensing, 69, 1021–1030.
-Kahn, M.E. (2000), “The environmental impact of suburbanization”, J. Policy Anal. Man- age. 19 (4), 569-586.
-Lee, D. (1974), “Requiem for large-scale models”, Journal of the American Institute of Planners, 39(3): 163-178.
-Li, L., Sato, Y., Zhu, H. (2002), “Simulating Spatial Urban Expansion Based on a PhysicaProcess,” Landscape and Urban Planning, Vol. 64, No. 1-2, 67-76.
-Matthews, R., Gilbert, N., Roach, A., Polhill, G., Gotts, N. (2007), “Agent-based land-use models: a review of applications”, Landscape Ecology 22, 1447-1459.
-McCuen, R.H. (2003), “Smart growth: hydrologic perspective”, J. Prof. Iss. Eng. Ed. Pr. 129 (3), 151-154.
-Pijanowski, B.C., Brown, D. G., Shellito, B.A., & Manik, G.A. (2002), “Using neural networks and GIS to forecast land use changes: a land transformation model,” Computers, Environment and Urban Systems, 26(6), 553e575.
-Pijanowski, B.C., S.H. Gage, D.T. Long & W. C. Cooper. (2000), “A Land Transformation Model: Integrating Policy, Socioeconomics and Environmental Drivers using a Geographic Information System”; In Landscape Ecology: A Top down Approach, Larry Harris and James Sanderson eds.
-Pontius, R.G. (2002), “Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions”, Photogrammetric Engineering and Remote Sensing 68, 1041–1049.
-Ritter, N., Logan, T., & Bryant, N. (1988), “Integration of neural network technologies with geographic information systems”,. Proceedings of the GIS symposium: integrating technology and geoscience applications (pp. 102–103). Denver, Colorado. United States Geological Survey, Washington, DC.
-Skapura, D. (1996), “Building Neural Networks”, New York: ACMPress.
-Stow, D.A., & Chen, D.M. (2002), “Sensitivity of multi-temporal NOAA AVHRR data of an urbanizing region to land use/cover changes and misregistration”, Remote Sensing of Environment, 80, 297–307.
-Sullivan, W.C., Lovell, S.T. (2006), “Improving the visual quality of commercial development at the rural–urban fringe”, Landscape Urban Plan, 77, 152-166.
-Vakil-Baghmisheh, M.T. and Pavešic N. (2003), “A Fast simplified fuzzy ARTMAP network”, Neural Processing Letters, 17, 273.
-VanDaalen, C.E., Dresen, L., Janssen, M. (2002), “The roles of computer models in the environmental policy life cycle”, Environmental Science and Policy 5, 221–231.
-Verburg PH, de Nijs TCM, Ritsemavan Eck J, Visser H, de Jong K. (2004), “A method to analysesneighborhood characteristics of land use patterns”, Comput Environ Urban Syst 28: 667-690.
-Yuji, h. kazuhiko, t. and satoru, Q. (2005), “Urbanization linked with past agricultular land use patterns in the urban fring of deltaic asian mega-city: a case study in bonkok”, usa. Landscape and Urban Planning, vol 73, , 16-28
-Martinuzzi, S., William A., Olga, G., Gonzalez, M.R. (2007), “Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data”, Landscape and Urban Planning 79, 288–297.
-Kumar Jat, M., Garg P.K., Khare, D. (2008), “Monitoring and modeling of urban sprawl using remote sensing and GIS techniques”, International Journal of Applied Earth Observation and Geo information 10, 26-43.