Document Type : Research Paper

Authors

4-1

Abstract

Introduction
The exploitation of natural water resources requires recognition of the quantity and, in particular, its quality. It is important to study the quality and quantity of flow in the river in order to evaluate its locative changes for its various uses. Usually the flow crossing the river is a source of water supply in various sectors of consumption, including drinking, agriculture and industry. Therefore, knowing the changes in the quality of river flow can have a significant impact on management and planning at harvest time and water consumption, especially drinking. Various studies have been done to predict and study water quality, but in terms of the quality of surface water, less attention has been paid to smart modeling. The superiority of smart models is determined in solving nonlinear and bulky problems that cannot be solved with high precision. Najah et.al (422: 2009) also emphasized the ability of neural networks to predict Malaysian ink's river water quality indices and the ability to estimate electrical conductivity (EC) and total dissolved solids (TDS) values and opacity in this basin. Kunwar et.al (95: 2009) has also used perceptron neural networks to model the quality parameters of the biological oxygen demand (BOD) and dissolved oxygen (DO) of Gottmy river in India and has emphasized its proper efficiency.The main objective of the present research is to construct a soft calculation model for estimating the salinity of the Nisa river flow at the site of the Yalkhary hydrometric station using various input scenarios which in areas such as the present study, there is the problem of data deficits, information, as well as lack of facilities and enough cost, can be done by using an estimation model with acceptable water quality accuracy.

Keywords

Main Subjects

-      ابریشم‌چی، احمد (1373)، مدل‌های ریاضی کیفیت رودخانه‌ها، نشریه آب و توسعه، شماره3، صص 74-65.
-      دین پژوه، یعقوب (1395)، تحلیل روند کیفیت شیمیایی آب رودخانه­های استان آذربایجان شرقی، نشریه جغرافیا و برنامه­ریزی ، سال 20، شماره 55، صص 124-105.
-      رحمتی، حسین؛ امامقلی زاده، صمد و انصاری، حسین (1396)، برآورد رواناب حوضه بار اریه با استفاده از مدل­های WetSpa و شبکه عصبی مصنوعی، نشریه جغرافیا و برنامه­ریزی تبریز، سال 21، شماره 62، صص 115-95.
-      فلاح‌قالهری، غلام‌عباس؛ موسوی‌بایگی، سید‌محمد و حبیبی‌نوخندان، مجید  (1388)، مقایسۀ نتایج به‌دست‌آمده از کاربرد سیستم استنباط فازی ممدانی و شبکه‌های عصبی مصنوعی در پیش‌بینی بارش فصلی، مطالعۀ موردی: منطقۀ خراسان، مجلۀ تحقیقات منابع آب ایران، سال پنجم، شمارۀ 2، صص 40- 52.
-      فتحیان، حسین, هرمزی نژاد، ایمان. (1390)، «پیش بینی پارامترهای کمی و کیفی جریان در رودخانه کارون (بازه ملاثانی-فارسیات) با استفاده از شبکه های عصبی مصنوعی»، اکوبیولوژی تالاب (تالاب)، شماره 8، صص 29-43.‎
-      نیکو، محمد؛ نیکو، مهدی؛ بابایی‌نزاد، تیمور؛ امیری، آزاده و رستم‌پور، قدرت‌الله  (1390)، تعیین کیفیت آب در طول مسیر رودخانه با استفاده از شبکه‌های عصبی مصنوعی تکاملی (مطالعه موردی رودخانه کارون بازه شهید عباس‌پور-عرب اسد)، سال اول، شماره 1، صص 58-45.
 
-       Coulibaly, Paulin, François Anctil, and Bernard Bobée. (1999). "Prévision hydrologique par réseaux de neurones artificiels: état de l'art." Canadian Journal of Civil Engineering 26, no. 3: 293-304.
-       Ferreira, C., 2001, Gene expression programming: a new adaptive algorithm for solving problems, Complex Systems, 13(2), 87–129.
-       Haykin, Simon. (1999). "Neural Networks A comprehensive Foundation: Pretice Hall International." Inc., Englewood Cliffs. 842 pp.
-       Ho, S. L., M. Xie, and T. N. Goh. (2002)."A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction." Computers & Industrial Engineering 42, no. 2-4: 371-375.
-       Hore, Ayan, Suman Dutta, Siddhartha Datta, and Chiranjib Bhattacharjee. (2008)."Application of an artificial neural network in wastewater quality monitoring: prediction of water quality index." International Journal of Nuclear Desalination 3, no. 2: 160-174.
-       Huiqun, M and Ling, L., 2008, Water quality assessment using artificial neural network, International Conference on Computer Science and Software Engineering, Washington, DC, USA, 5-13.
-       Jang, J-SR. (1993). "ANFIS: adaptive-network-based fuzzy inference system." IEEE transactions on systems, man, and cybernetics23, no. 3: 665-685.
-       Kisi, Ozgur. (2008)."The potential of different ANN techniques in evapotranspiration modelling." Hydrological Processes 22, no. 14: 2449-2460.
-       Kunwar ,Singh, P., Ankita Basant, Amrita Malik, and Gunja Jain. (2009). "Artificial neural network modeling of the river water quality—a case study." Ecological Modelling 220, no. 6: 888-895.
-       Maier, Holger R., and Graeme C. Dandy. (1996)."The use of artificial neural networks for the prediction of water quality parameters." Water resources research 32, no. 4: 1013-1022.
-       Najah, Ali, Ahmed Elshafie, Othman A. Karim, and Othman Jaffar. (2009). "Prediction of Johor River water quality parameters using artificial neural networks." European Journal of Scientific Research 28, no. 3: 422-435.
-       Tayfur, Gokmen. (2002). "Artificial neural networks for sheet sediment transport." Hydrological Sciences Journal 47, no. 6: 879-892.