Document Type : Research Paper

Authors

Assistant professor of Department of Remote Sensing, Geographical Information Systems, University of Tabriz

Abstract

Segmentation is one of the basic method of the information extraction within the object-based image analysis (OBIA) approach. This process separates initial and main objects which are basis for OBIA. According to this, generating appropriate segments plays an important role for performing high accurate object-based classification. Within this research, we aimed to employ multi spectral and spatial satellite images including: IRS, Quick Bird and Spot5, for the purpose of image fusion and optimizing the scale of segmentation. For this to happen, Multi-resolution segmentation approach was performed based on various satellite images with different spatial resolution. As that, spatial information of Quick Bird and panchromatic band of IRS and Spot5 images, alongside spectral resolution of Spot5 (red band, especially) and Quick Bird, have a significant impact in increasing the contrast of image and improve the quality of segmentation, subsequently. The results of this research, indicate the importance of applying spatial information for optimizing the scale of segmentation. In addition, results confirmed that object based image fusion techniques can be employed for integrating different spatial resolution of satellite images. It also turned out that integrating lower spatial resolution with high spatial resolution is an efficient procedure for improving segmentation quality. The results of research, are great of importance for identifying different segmentation approach of object-based classification. The achieved results are also important for executive departments such as Natural resource, agriculture, etc. in light of presentation appropriate approach for rapid extraction of information from satellite image.

Keywords

Main Subjects

- فیضی­زاده، بختیار، هلالی، حسین. (1389). مقایسه روش­های پیکسل پایه، شیءگرا و پارامترهای تاثیرگذار در طبقه­بندی پوشش کاربری اراضی استان آذربایجان­غربی. مجله پژوهش­های جغرافیای طبیعی، شماره71 . صص73 -84.
- فیضی­زاده، بختیار، حاجی­میر­رحیمی، سید­محمود. (1386) . آشکارسازی تغییرات فضای سبز شهر تبریز با استفاده از روش­های شیءگرا. اولین همایش سیستم­اطلاعات­جغرافیای شهری. دانشگاه شمال. آمل.10صفحه http://www.civilica.com/Paper-CUG01-CUG01_013.html
- فیضی­زاده، بختیار، جعفری، فیروز، نظم­فر، حسین. (1387) . کاربرد داده­های سنجش­از دور در آشکارسازی تغییرات کاربری­های اراضی شهری . نشریه هنرهای زیبا. شماره 34. صص17-24.
قربانی، رسول، پورمحمدی، محمدرضا، محمودزاده، حسن. (1395). ارزیابی و تحلیل گسترش فضایی کلانشهر تبریز با استفاده از تصاویر چند زمانه، نشریه جغرافیا و برنامه ریزی دانشگاه تبریز، (20)56، 238-219.
-Baatz.M &Schpe. A. (2000). Multiresolution segmentationan optimization approach for high quality multi-scale image segmentation. (Eds.),Angewandte Geographische Information verarbeitung XII. Beitra ¨ge zum AGIT- SymposiumSalzburg, vol. 200. Karlsruhe7 Herbert Wichmann Verlag. pp. 12 –23.
- Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239-258.
- Blaschke, T., Feizizadeh, B., & Holbling, D. (2014). Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake Basin, Iran. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal, 7(12), 4806-4817
-Blaschke.T. (2010). Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, journal homepage .pp.10-21
- Blaschke, T, Burnett, C. (2003). A multi-scale segmentation/object relationship modeling methodology for landscape analysis. Ecological Modeling 168: 233-249.
- Blaschke.T, Lang.S. (2006). Bridging remote sensing and GIS-what are the main supportive pillsrs? International Conference on Object-based Image Analysis (OBIA 2006), University of Salzburg, Austria, pp.20
- Chaudhuri, B., & Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence,pp. 17, 72– 77.
- Clemens Eisank, Lucian Drăguţ, (2012), automated classification of topography from SRTM data using object-based image analysis, Geomorphology; 141-142:21-33.
- Claudia M. A, Iris M. S, Claudia D.A, Carolina M. D, Madalena N. P, Raul Q. F. (2007). Multilevel Object- Oriented Classification of Quickbird Images for Urban Population Estimates, Advances in Geographic Information Systems ACM GIS.pp. 5
-Dragut,L. Csillik,O. Eisank,C. Tiede,D.(2014). Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing 88 (2014) 119–127  
- Dehvari. A, Heck R. J.(2009). Comparison of object-based and pixel based infrared airborne image classification methods using DEM thematic layer, Journal of Geography and Regional Planning Vol. 2(4), , April, 2009,Available online at www.academicjournals.org /JGRP ISSN 2070-1845, pp. 086-096.
-  Hofmann, T., Puzicha, J., & Buhmann, J, (1999). Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, NO20, pp.803-818
- Geman, D.; Geman, S.; Graffigne, C & Dong, P. (1990).  Boundary detection by constrained optimization. In: IEEE Transactions on Pattern Analysis and Machine Intel ligence, Vol. 12, Nr. 7, S.609-628.
- Jain, A. & F. Farrokhnia (1991). Unsupervised texture segmentation using Gabor filters. In: Pattern Recognition. Vol. 24, Nr. 12, S. 1167- 1186
- Meinel, G., Neubert, M. & Reder, J. (2001) The potential use of very high resolution satellite data  for urban areas – First experiences with IKONOS data, their classification and application in urban planning and environmental monitoring. In: Jürgens, C. (ed.): Remote sensing of urban areas. Regensburger Geographische Schriften 35, pp. 196-205.
- Platt, R. V. and Schoennagel, T.) 2009(. an object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938–1999, Forest Ecology and Management 258 (2009), Journal homepage: www.elsevier.com/locate/foreco, pp.1342–1349
-Wegner,S.,Oswald,H.,Wust,P.,&Fleck,E.(1997).Segmentierung mit der Wasserscheiden transformation. Spektrum der Wissenschaft, 6, 113-115
- Yan, GAO, (2003), Pixel Based and Object Oriented Image for Coal Fire Research, http://www.ITC.com (accessed in July 2008). pp. 3-99
-  Zhaocong, W, Lina, Y. and Maoyun, Q.(2009). Granular Approach to Object-Oriented Remote Sensing Image Classification, RSKT 2009, LNCS 5589, PP. 563– 570.