Document Type : Research Paper

Authors

1 Department of Geography, Islamic Azad University Ardabil Branch, Ardabil, Iran

2 PhD Student Department of Geography and urban planning, Ardabil Branch, Islamic Azad University, Ardabil, Iran

3 Department of Geography, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract

Introduction
Over the last few decades, natural disasters and their aftermath have become a major concern for leaders and organizations around the world. Vulnerability is the "characteristics of an individual, group or system and their situation that affect their ability to anticipate, cope with, resist and recover from natural hazards." Physical vulnerability is: "The probability (or potential) of being affected or damaged by a specific physical component or element under the influence of a particular external driving force, for example a natural hazard such as an earthquake. Today, physical vulnerability is a component. The main key elements are used as model input data by organizations in charge of risk prevention and mitigation, and the development of building codes and guidelines. A look at the seismic history of Iranian cities in less than a hundred years, the widespread vulnerability of Iranian cities to this natural disaster is evident, of course, among the concerns of residents of dilapidated cities. It will be far more than others. The main goal of the action plan is to provide a rapid and effective response that minimizes potential damage to people, property and the environment, and returns basic services to people in the shortest possible time.
 
Data and Method
In this study, a method based on the vulnerability index has been used to assess the expected damage in Ardabil. Risk analysis for seismic scenarios defined by seismic intensities V, V-VI, VI, VI-VII and VII has been performed to design seismic emergency plans. This method uses the mean of quasi-experimental vulnerability functions, which for a given vulnerability index is strongly related to the seismicity and the expected damage. According to the country's seismic Codes, the basic peak ground acceleration for a 475-year return period is 0.04g, which corresponds to an intensity of VII. Thus, while quantifying physical damage, its impact on the population and other amounts such as debris and economic costs have been investigated.
 
Results and Discussion
Vulnerability of buildings in Ardabil shows an average value of 0.59 for concrete buildings and 0.93 for buildings with building materials, which are the most vulnerable. Therefore, it is predicted that buildings with building materials that belong to worn-out structures will have a higher degree of damage. The distribution of highly vulnerable neighborhoods is seen in the central core of the city. The vulnerability index of areas 1 and 3 is higher than other areas. For the seismic scenario VII, the degree of vulnerability of these textures is heavy, very heavy and completely devastated. In the worst-case scenario, about three in a thousand people die of decayed textures, and not every thousand people suffer various injuries. An earthquake with a intensity of V-VI will cost approximately 98 million Rials and a intensity VII equal to 6800 million Rials for these textures. Due to the impact of a seismic crisis on narrow and uneven communication passages and arteries, there is a significant volume of expected debris production among the eroded neighborhoods (for scenarios V-VI and VII, respectively, between 1701 up to 13989 tons). Due to the combined effects of the large volume of debris produced and the urban pattern of narrow and irregular passages, any movement will face several problems. In the seismic scenario with intensity V-VI, 332 people from the population of     decayed textures and in the scenario with intensity VII, 3224 people from the population of textures these become homeless. Therefore, the only way to reduce seismic risk with a vulnerability reduction approach is to apply seismic instructions and increase public awareness of these issues.
 
Conclusion
The city of Ardabil is in the range of moderate to high seismic hazard, which is mainly due to the large accumulation of population and old and vulnerable buildings. Vulnerability of residential buildings is high, mainly due to their age and lack of knowledge and awareness of seismic hazard and in terms of seismic actions expected in the design and construction of buildings. This high vulnerability causes significant direct physical damage to buildings, especially worn-out structures, even for low-intensity earthquakes. As a result, the expected physical damage in the case of moderate earthquakes is significant. For a intensity V earthquake, the damage is not expected to be significant, but for a intensity VII scenario, all five areas and the dilapidated tissues within them will experience a level of damage that is slightly higher. Damage is 2 (moderate). In addition to the significant number of casualties, emergency management after the earthquake and subsequent recovery of normal city activities in the medium and long term is important.

Keywords

Main Subjects

  • اسفندیاری، فریبا، غفاری­گیلانده، عطا، لطفی، خداد (1393)، بررسی توان لرزه­زایی گسل­ها و برآورد تلفات انسانی ناشی از زلزله در مناطق شهری (مطالعه موردی: شهر اردبیل، فصلنامۀ پژوهش­های ژئومورفولوژی کمی، سال دوم، شمارۀ 4، صص 36-17.
  • بیت­اللهی، علی و غزاله رزاقیان (1397)، پهنه­بندی گسترۀ ایران بر اساس تغییرات نسبت ضرایب لرزه­خیزی a/b، مجلۀ زمین­­شناسی کاربردی پیشرفته، شمارۀ 29، صص  83-75.
  • توکلی، بهروز و محسن غفوری ­آشتیانی (1378)، نقشۀ خطر لرزه­ای ایران، موسسۀ بین­المللی زلزله­شناسی و مهندسی زلزله، مقیاس: 1:5,000,000، تهران، چاپ نخست.
  • حبیبی، کیومرث، عزتی، محمد، ترابی، کمال و بختیار عزت­پناه (1395)، بررسی آسیب­پذیری شهرها در برابر زلزله با استفاده از  مدل MIHWP ( مطالعۀ موردی منطقۀ 10 تبریز)، نشریۀ علمی جغرافیا و برنامه­ریزی، سال 20، شمارۀ 72 (زمستان)، صص 356-319.
  • دربان آستانه، علیرضا و مصطفی هرائینی (1398)، تحلیل فضائی تاب­آوری اجتماعی، اقتصادی اجتماعات محلی در برابر زلزله (مطالعۀ موردی: بخش آفتاب ـ شهرستان تهران)، نشریۀ علمی جغرافیا و برنامه­ریزی، سال 23، شمارۀ 68 (تابستان)، صص 111-91.
  • صمدزاده، رسول، خیام، مقصود، حسینی امینی، حسن (1389)، نگرشی نو بر تکامل ژئومورفولوژیکی چالۀ زمین­ساختی اردبیل با رویکرد آمایش سرزمین، فصل­نامۀ علمی پژوهشی جغرافیا و برنامه­ریزی محیطی، دانشگاه اصفهان، 21(1)، صص 105-130.
  • قنبری، ابوالفضل (1399)، ارزیابی ارتباط بین تاب­آوری منطقه­ای و آسیب­پذیری محیطی در منطقۀ کرانۀ شرقی دریاچۀ ارومیه با استفاده GIS، نشریۀ علمی جغرافیا و برنامه­ریزی، سال 24، شمارۀ 72 (تابستان)، صص 356-319.
  • لطفی، خداد، غفاری­گلانده، عطا، اسفندیاری، فریبا (1393)، ارزیابی آسیب پذیری شهرها از گسل های پیرامونی با استفاده از روشTOPSIS در محیط GIS (مطالعۀ موردی: شهر اردبیل) ، مجلۀ مخاطرات محیط طبیعی، سال سوم، شمارۀ 4، صص 33-17.
  • مرکز تحقیقات راه، مسکن و شهرسازی (1393)، آیین­نامۀ طراحی ساختمان­ها در برابر زلزله، استاندارد 2800 (ویرایش چهار)، نشریۀ شمارۀ ض-253.
  • ATC-13., (1985), Earthquake damage evaluation data for California. ATC-13, 492. Redwook City, California: Applied Technology Council, 121p.
  • Basaglia, A., Aprile, A., Spacone, E and F., Pilla., (2018), Performance-based seismic risk assessment of urban systems. International Journal of Architectural Heritage, 12 (7-8): 1131-1149, Doi: 10.1080/15583058.2018.1503371.
  • Ciurean-Roxana, L., Schröter, D., and Glade, T., (2013), Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction, licensee Intech, 1-23. (http://creativecommons.org/licenses/by/3.0).
  • Coburn, A., and Spence, R., (1992), Earthquake Protection, Chichester, England: John Wiley & Sons,
  • Coburn, A., and Spence, R., (2002), Earthquake Protection, Chichester, England: John Wiley & Sons, 2nd Ed 436
  • FEMA/NIBS., (2002), HAZUS Technical Manual -SR2. Washington D.C.: Federal Emergency Management Agency, FEMA and National Institute of Building Sciences, NIBS.1, 2, 3.
  • Ferlito, R., and Pizz, A., G., (2011), Vulnerability Model of an urban centre. Methodology for a Quick Evaluation of Emergency Road Network Vulnerability 28 (4):31–49.
  • Jiménez, B., Pelà, L., & Hurtado, M., (2018), Building survey forms for heterogeneous urban areas in seismically hazardous zones. Application to the historical center of Valparaíso, Chil, International Journal of Architectural Heritage, PP. 1-36. DOI: 10.1080/15583058.2018.1503370
  • Giovinazzi, S., (2005), The vulnerability assessment and the damage Scenario in seismic risk analysis. PhD dissertation, The Department of Civil Engineering of the Technical University Carolo-Wilhelmina at Braunschweig and the Faculty of Engineering Department of Civil Engineering of the University of Florence. Accessed October 11, 2017. https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001757.
  • Giovinazzi, S., and Lagomarsino, S., (2002), WP04: Guidelines for the implementation of the 1 level methodology for the vulnerability assessment of current buildings. Risk-UE report, Genoa, Italy doi: 10.1044/1059-0889(2002/er01).
  • Grünthal, G., Ed., (1998), European Macroseismic Scale 1998. Vol. 15. Luxemburg: Centre Européen de Géodynamique et Séismologie, Cahiers du Centre Européen de Géodynamique et de Séismologie.
  • Lagomarsino, S., and Giovinazzi, S., (2006), Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering 4 (4):415–43. Doi: 10.1007/s10518-006-9024-z.
  • Lantada, N., (2007), Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. Tesis Doctoral, Universidad Politécnica de Cataluña, Dpto. De Ingeniería del terreno cartográficay geofísica. http://www.tdx.cat/handle/10803/6259.
  • Lantada, N., Pujades, L., G., & Barbat, A., H., (2018), Earthquake Risk Scenarios in Urban Areas: A Review with Applications to the Ciutat Vella District in Barcelona, Spain, International Journal of Architectural Heritage, DOI: 10. 1080/15583058.2018.1503367. https://doi.org/10. 1080/15583058.2018. 1503367
  • Lantada, N., rizarry, I., J., Barbat, A., H., Goula, X., Roca, A., Susagna, T., and Pujades, L. G., (2010), Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin Earthquake Engineering 8:201–29. Doi: 10.1007/s10518-009-9148-z.
  • Lestuzzi, P., Podestà, S., Luchini, C., Garofano, A., KazantzidouFirtinidou, D., Bozzano, C., Bischof, P., Haffter, A., and Rouiller, J., D., (2016), Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-Ue methodology. Natural Hazards 84:249–269.
  • Meslem, A., and Lang, D., H., (2017), Physical Vulnerability in Earthquake Risk Assessment, Online Publication Date: May 2017 DOI: 10.1093/acre fore/9780199389407.013.71.
  • Milutinovic, Z., V., and Trendafiloski, G., S., (2003), WP04 Vulnerability of current buildings. RISK-UE project of the EC: an advanced approach to earthquake risk scenarios with applications to different European towns, 111p.
  • Mouroux, P., and Lebrun, B., (2006a), RISK-UE project: An advanced approach to earthquake risk scenarios with application to different European towns. In Assessing and managing earthquake risk, eds. C. S. Oliveira, A. Roca, and X. Goula, 479–508. Berlin: Springer.
  • Mouroux, P., and Lebrun, B., (2006b), Presentation of RISK-UE Project. Bull Earthq Eng. Special Issue: Earthquake Scenarios for European Cities, 4 (4):323–339.
  • Rivas-Medina, A., Gaspar-Escribano, J., M., Benito, B., and Bernabé, M. A., (2013), The role of GIS in urban seismic risk studies: Application to the city of Almería (southern Spain). Natural Hazards and Earth System Sciences 13 (11):2717–2725. Doi: 10.5194/nhess-13-2717-2013.
  • Servi, M., (2004), Assessment of vulnerability to earthquake hazards using spatial multicriteria analysis: Odunpazari, Eskisehir case study, a thesis submitted to the graduate school of natural and applied sciences of Middle East technical university, 94p.
  • Turner,, Kasperson, L., Matson, R., E., Mccarthy, P., A., Corell, J., J., Christensen, L., & et al., (2003), A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100 (14): 8074-8079.
  • , (2012), Recommendation on the Historic Urban landscape. Records of the General Conference 36th session. http://unesdoc.unesco.org/images/0021/002150/ 15084e.pdf#page=52.
  • , (2013), New life for historic cities: The historic urban landscape approach explained. Parigi, Francia: UNESCO Publishing.
  • Vacareanu, R., D. Lungu, C. Arion, and A. Aldea., (2004), WP07. Seismic risk scenarios handbook, 52, Report. RiskUE Project, Bucharest.
  • Wisner, B., Blaikie, P., Cannon, T., Davis, I. (2004). At risk: natural hazards, people’s vulnerability and disasters, 2nd end. Routledge, London, 220p.
  • Yamin, L., Hurtado, E., A., Barbat, I., A., Bernal, A., G., and Cardona, O., (2012), Earthquake Vulnerability Assessment of Buildings for Catastrophic Risk Analysis in Urban Areas, 15 WCEE, LISBOA.