Prediction of Gully Erosion and identifying factors affecting it using the Maximum Entropy Model and BCC-CSM2-MR climate change models for the years 2020-2040 (case study: Alamarvdasht watershed)

Document Type : Research Paper

Authors

1 University of Isfahan

2 بلوار شفق-کوی گلستان-کوچه شماره 8 (شهید مرادی)- ابندای کوچه-پلاک 103-طبقه همکف-ذاکری نژاد

Abstract

Gully erosion is one of the most dangerous types of water erosion that destroys land and disrupts the balance of biological resources and the environment. In this study, the effective factors in gully erosion, prediction and zoning of gully erosion were investigated using the maximum entropy model in Alamarvdasht watershed in Fars province. First, the location of the ditches was prepared through field surveys, aerial photographs and using Google Earth software images, and then the digital layer of the ditches was prepared in point form in the GIS software environment, and in the next step, the basin's physiographic indicators was prepared from in ARC GIS software. In this research, a soil texture map was prepared in GIS software with field operations in the study area and soil sampling and testing, and a land use map and vegetation density was prepared using Landsat satellite images, and then each of the indicators was The ditches were added in the GIS environment. To implement the maximum entropy model, 70% of the data were used for model training and 30% for model testing. In this study, the effect of each other indicators was determined using the Jack Knife test, and finally the most effective indicators were introduced. In order to validate the model, the direction of zoning of gully erosion in the studied area was evaluated using curve (ROC) and area under the curve (AUC). The results of this research showed that climate index, slope, geology, land use, direction of slope and height are the most influential indicators in creating ditch erosion and the AUC=0.997 is at an excellent level.

Keywords

Main Subjects


فرسایش خندقی یکی از مخاطره آمیز ترین انواع فرسایش آبی است که موجب تخریب اراضی و برهم خوردن تعادل منابع زیستی و محیط زیست می شود. تغییرات اقلیمی بر ویژگی‌های حوضه‌های آبخیز تاثیراتی به جا می‌گذارد که به نوبه خود به تغییر در فرسایش و رسوب حوضه منجر می‌شود. هدف این مطالعه تعیین عوامل موثر در فرسایش خندقی، پیش بینی و پهنه بندی فرسایش خندقی با استفاده از مدل حداکثر آنتروپی می‌باشد. همچنین با تاکید بر نقش عامل فرسایندگی باران، با استفاده از داده‌های خروجی مدل BCC-CSM2-MR، گزارش ششم، سناریو 126 به برآورد و پیش‌یابی تغییرات فرسایش خاک در حوضه آبخیز علامرودشت پرداخته شد. و در ادامه مدل حداکثر آنتروپی محاسبه و مدل برای سال‌های 2020 تا 2040 به منظور نیل به اهداف ارائه شده اجرا شد. ابتدا موقعیت خندق ها از طریق بررسی های میدانی، عکس های هوایی و با استفاده از تصاویر نرم افزار گوگل ارث تهیه گردید و سپس در محیط نرم افزار GIS لایه رقومی خندق ها نیز به صورت نقطه ای تهیه گردید، در مرحله بعدی شاخص های فیزیوگرافی حوضه در نرم افزار ARC GIS تهیه شد. در این تحقیق با عملیات میدانی در منطقه مورد مطالعه و نمونه برداری از خاک و انجام آزمایش، نقشه بافت خاک در نرم افزار GIS و در ادامه نقشه کاربری اراضی و تراکم پوشش گیاهی با استفاده از تصاویر ماهواره لندست تهیه گردید و سپس هریک از شاخص ها در محیط GIS اضافه گردید. در این مطالعه با استفاده از آزمون جک نایف میزان تأثیر هر یک از شاخص‌ها بر دیگر شاخص‌ها مشخص شده که در نهایت تأثیرگذارترین شاخص‌ها معرفی شد. جهت اعتبار سنجی مدل پهنه بندی فرسایش خندقی منطقه مورد مطالعه از منحنی (ROC)  و مساحت زیر منحنی  (AUC)استفاده شد. همچنین برای برآورد اثرات تغییر اقلیم بر فرسایش منطقه ابتدا یک نقشه ماهانه با استفاده از مدل حداکثر آنتروپی و سپس یک نقشه متوسط ماهانه تهیه گردید که در این نقشه AUC=0.833 و همچنین چهار نقشه برای چهار فصل سال تهیه گردید نتایج حاصل از این پژوهش نشان می‌دهد که در فصل پاییز فرسایش بسیار شدیدتر از فصل های دیگر است که با توجه به اینکه در منطقه مورد مطالعه در فصل پاییز و در ماه‌های آذر و دی بارندگی بسیار شدید و به صورت سیلابی رخ می‌دهد نتایج مدل با اطلاعات منطقه همخوانی دارد و این نشان‌دهنده دقت بالای مدل حداکثر آنتروپی است. همچنین شاخص‌های اقلیم، شیب، زمین شناسی، کاربری اراضی، جهت شیب و ارتفاع تأثیرگذارترین شاخص‌ها در ایجاد فرسایش خندقی است و میزان AUC=0.997  برای آموزش و اجرای مدل در سطح عالی است

Ildarmi Alireza; Moradi Mina. (2017). Assessment of wind erosion intensity using the IRIFR.E.A model (Case study: Ghahavand Plain, Hamadan), Scientific Journal of Geography and Planning, 21(60), 52-35. [In persian]
 Abuvalvardi Zahra; Sofi Majid; Nejabet Masoud. (2011). Investigation of effective factors in estimating gully volume in the Allamroodasht region of Lamerd County in Fars Province, Fifth National Conference on Watershed Management and Soil and Water Resources Management.
[In persian]
 Besharti Bashir; Abedini Musa; Asghari Sayyad. (2018). Investigation and analysis of effective factors on the creation and development of gully erosion in the Shoor Chay watershed, Geographical Research Journal, 33(2): 20-222. [In persian]
 Bayati Khatibi Maryam. (2011). Assessment and prediction of soil erosion risk in the Sarasikandar Chay basin using USLE and GIS model, Scientific Journal of Geography and Planning, 19 (54): 61-81. [In persian]
 Piroozenejad Sajjad. “Prediction of gully erosion using remote sensing data and Maxent model in Alvand basin”, Master’s degree in watershed management, Sari University of Agricultural Sciences and Natural Resources, (2017). [In persian]
 Habibi Alireza. (2017). Zoning of gully erosion to identify villages at risk using a fuzzy model in the Gargar Shushtar River basin, Geographic Quarterly of Scientific and Research Land, 14 (53): 37-52. [In persian]
 Zare Soheila; Soltani Gerdfaramarzi Somayeh; Taze Mehdi. (2016). Comparison of geostatistical methods in zoning of rain erosion index (case study: Fars province), Scientific Journal of Geography and Planning, 23 (68): 157-177. [In persian]
 Tahmasebipour Naser; Rahmati Omid; Ghorbani Nejad Samira. (2015). Prediction of gulley erosion sensitivity in Samireh region based on the certainty factor model and determining the importance of factors affecting it, Journal of Ecohydrology, 3(1): 83-93. [In persian]
 Arab Ameri Alireza; Rezaei Khalil; Yamani Mojtaba; Shirani Kourosh. (2015). Optimization of gulley erosion sensitivity map using data-driven statistical integrated methods (case study: Toroud-Najjarabad basin), Quarterly Journal of Earth Science Research, 10(1): 18-38. [In persian]
 Azimi Sardari Mohammadreza; Bazrafshan Um-al-Benin; Panagopoulos Thomas; Rafiei Sarodei Elham. (2019). Current and future assessment of soil erosion in the Minab Esteghal Dam watershed using the RUSLE-3D model and climate change scenarios, Journal of Desert Management, 7(14): 132-119. [In persian]
 Gholami Mohammad; Ahmadi Mehdi; Mahmoudi Mehran. (2017). Analysis of geomorphological constraints on the physical expansion of the city with emphasis on ditch erosion (Case study: Mohr city in the south of Fars province), Journal of Natural Hazards, 6(12): 124-105. [In persian]
 Mirzadeh Koohshahi Farzaneh; Akbarian Mohammad; Khurani Asadollah. (2014). Journal of Environmental Erosion Research, 50(2): 81-63. [In persian]
 Nikpour Noorollah; Fatouhi Samad; Negaresh Hossein; Sistani Masoud. (2016). Gully erosion morphometry and factors affecting its formation and expansion (Cham Fazel plain basin in southwestern Ilam province), Journal of Spatial Analysis of Environmental Hazards, 4 (1): 97-11. [In persian]
 Zakeri Nejad Reza. (2019). Evaluation of digital elevation models for preparing gully erosion potential maps using the Maxent model and geographic information system (Case study: Semirom watershed, southern Isfahan province), Journal of Remote Sensing and Geographic Information System in Natural Resources, 11 (3): 21-24. [In persian]
 Zakeri Nejad Reza; Alvandi Paryush. (2014). Gully erosion prediction using TanDEM-x data and maximum entropy model (Case study: Khasuyeh watershed), Journal of Environmental Erosion Research, 49 (1): 113-96.[In persian]
Arabameri, A., Cerda, A., Tiefenbacher, J.P. (2019). Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water. 11(6): 1129.
Conforti, M, Aucelli, P., Robustelli, G., Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards, 56(3): 881-898.
Dhianaufal, D., Kristyanto,T. H. W., Indra, T. L., & Syahputra, R. (2018). Fuzzy Logic Method for Landslide Susceptibility Mapping in Volcanic Sediment Area in Western Bogor, Proceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences 2017 (ISCPMS2017) AIP Conf.
Ebrahim, M., Abalghasem, A., Ahmadi, M., Asadi, A. (2018). Comparison of Gully Erosion Susceptibility Mapping Using Weight of Evidence and Frequency Ratio Models at Sanganeh Kalat Basin. (4)32: 105-126.
Gupta, S., & S. Kumar., (2017). Simulating climate change impact on soil erosion using RUSLE model− A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science, 126(3), 1-20.
Hosmer D.W., Lemeshow, S. (2000) Applied Logistic Regression, 2nd ed. Wiley, New York 392 pp.
Modak, P., Mandal, M., Ghosh, B. (2022) Gully erosion vulnerability modelling, estimation of soil loss and assessment of gully morphology: a study from cratonic part of eastern India, Journal of  Environmental Science And Pollution Research, 9(34): 85-99
Nazari Samani, A., Ahmadi H., Jafari, M., Boggs, G., Ghoddousi, J., Malekian,A. (2009). Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed). Journal of Asian Earth Sciences, 35(2): 180-189.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.
Poesen, J, Nachtergaele, J, Verstraeten G, Valentin C. (2003). Gully erosion and environmental change: importance and research needs. CATENA, 50(2): 91-133.
Rahmati, O, Haghizadeh, A, Pourghasemi, H.R, & Noormohamadi, F. (2016), Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2), 1231-1258.
Shit, P, K, Paira, R., Bhunia, G, Maiti, R. (2015). Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1(1-2), 2.129.
Valentin, C, Poesen, J, Li Y. (2005). Gully erosion: Impacts, factors and control. CATENA, 63(2): 132-153.
Masoudi M., Zakerinejad R (2011). A new model for assessment of erosion using desertification model ofIMDPA in Mazayjan plain, Fars province, Iran. Ecol Environ Conserv 17(3): 489–594.  
Zakerinejad, R, Maerker, M. (2014). Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain,Southwest Iran. Geografia Fisica e Dinamica Quaternaria, 37(1): 67- 76.
Zakerinejad R, Maerker M. (2015). An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards, 79(1): 25-50.
Zakerinejad, R., Omran, A., Hochschild, V., Maerker, M. (2018). Assessment of gully erosion in relation to lithology in the Southwestern Zagros Mountains, Iran using ASTER data, GIS and stochastic modeling. Geografia Fisica Edinamica Quaternaria, 41(2): 95-104.
Zakerienjad R, Masoud M (2020). Quantitative mapping of desertification risk using modified MEDALUS model: a case study in the Mazayejan Plain, Southwest Iran. AUC Geographica 54(2), 232–239.
Zhu, A. X., Wang, R., Qiao, J., Qin, C. Z., Chen, Y., Liu, J., Du, F., Lin, y., & Zhu, T. (2014). An expertknowledge- based approach to landslide susceptibility mapping using GIS and fuzzy logic, Geomorphology, 7,pp: 128-138.
Zakerinejad, R, Christian, S, Volker, H, Michael, M, (2021). Spatial Disterbution Of Water Erosion Using Stochastic Modeling  In The Southern Isfahan Province, Iran, Geogr FIS DIN QUAT 44 (2): 203 -216.