Ildarmi Alireza; Moradi Mina. (2017). Assessment of wind erosion intensity using the IRIFR.E.A model (Case study: Ghahavand Plain, Hamadan), Scientific Journal of Geography and Planning, 21(60), 52-35. [In persian]
Abuvalvardi Zahra; Sofi Majid; Nejabet Masoud. (2011). Investigation of effective factors in estimating gully volume in the Allamroodasht region of Lamerd County in Fars Province, Fifth National Conference on Watershed Management and Soil and Water Resources Management.
[In persian]
Besharti Bashir; Abedini Musa; Asghari Sayyad. (2018). Investigation and analysis of effective factors on the creation and development of gully erosion in the Shoor Chay watershed, Geographical Research Journal, 33(2): 20-222. [In persian]
Bayati Khatibi Maryam. (2011). Assessment and prediction of soil erosion risk in the Sarasikandar Chay basin using USLE and GIS model, Scientific Journal of Geography and Planning, 19 (54): 61-81. [In persian]
Piroozenejad Sajjad. “Prediction of gully erosion using remote sensing data and Maxent model in Alvand basin”, Master’s degree in watershed management, Sari University of Agricultural Sciences and Natural Resources, (2017). [In persian]
Habibi Alireza. (2017). Zoning of gully erosion to identify villages at risk using a fuzzy model in the Gargar Shushtar River basin, Geographic Quarterly of Scientific and Research Land, 14 (53): 37-52. [In persian]
Zare Soheila; Soltani Gerdfaramarzi Somayeh; Taze Mehdi. (2016). Comparison of geostatistical methods in zoning of rain erosion index (case study: Fars province), Scientific Journal of Geography and Planning, 23 (68): 157-177. [In persian]
Tahmasebipour Naser; Rahmati Omid; Ghorbani Nejad Samira. (2015). Prediction of gulley erosion sensitivity in Samireh region based on the certainty factor model and determining the importance of factors affecting it, Journal of Ecohydrology, 3(1): 83-93. [In persian]
Arab Ameri Alireza; Rezaei Khalil; Yamani Mojtaba; Shirani Kourosh. (2015). Optimization of gulley erosion sensitivity map using data-driven statistical integrated methods (case study: Toroud-Najjarabad basin), Quarterly Journal of Earth Science Research, 10(1): 18-38. [In persian]
Azimi Sardari Mohammadreza; Bazrafshan Um-al-Benin; Panagopoulos Thomas; Rafiei Sarodei Elham. (2019). Current and future assessment of soil erosion in the Minab Esteghal Dam watershed using the RUSLE-3D model and climate change scenarios, Journal of Desert Management, 7(14): 132-119. [In persian]
Gholami Mohammad; Ahmadi Mehdi; Mahmoudi Mehran. (2017). Analysis of geomorphological constraints on the physical expansion of the city with emphasis on ditch erosion (Case study: Mohr city in the south of Fars province), Journal of Natural Hazards, 6(12): 124-105. [In persian]
Mirzadeh Koohshahi Farzaneh; Akbarian Mohammad; Khurani Asadollah. (2014). Journal of Environmental Erosion Research, 50(2): 81-63. [In persian]
Nikpour Noorollah; Fatouhi Samad; Negaresh Hossein; Sistani Masoud. (2016). Gully erosion morphometry and factors affecting its formation and expansion (Cham Fazel plain basin in southwestern Ilam province), Journal of Spatial Analysis of Environmental Hazards, 4 (1): 97-11. [In persian]
Zakeri Nejad Reza. (2019). Evaluation of digital elevation models for preparing gully erosion potential maps using the Maxent model and geographic information system (Case study: Semirom watershed, southern Isfahan province), Journal of Remote Sensing and Geographic Information System in Natural Resources, 11 (3): 21-24. [In persian]
Zakeri Nejad Reza; Alvandi Paryush. (2014). Gully erosion prediction using TanDEM-x data and maximum entropy model (Case study: Khasuyeh watershed), Journal of Environmental Erosion Research, 49 (1): 113-96.[In persian]
Arabameri, A., Cerda, A., Tiefenbacher, J.P. (2019). Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water. 11(6): 1129.
Conforti, M, Aucelli, P., Robustelli, G., Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards, 56(3): 881-898.
Dhianaufal, D., Kristyanto,T. H. W., Indra, T. L., & Syahputra, R. (2018). Fuzzy Logic Method for Landslide Susceptibility Mapping in Volcanic Sediment Area in Western Bogor, Proceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences 2017 (ISCPMS2017) AIP Conf.
Ebrahim, M., Abalghasem, A., Ahmadi, M., Asadi, A. (2018). Comparison of Gully Erosion Susceptibility Mapping Using Weight of Evidence and Frequency Ratio Models at Sanganeh Kalat Basin. (4)32: 105-126.
Gupta, S., & S. Kumar., (2017). Simulating climate change impact on soil erosion using RUSLE model− A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science, 126(3), 1-20.
Hosmer D.W., Lemeshow, S. (2000) Applied Logistic Regression, 2nd ed. Wiley, New York 392 pp.
Modak, P., Mandal, M., Ghosh, B. (2022) Gully erosion vulnerability modelling, estimation of soil loss and assessment of gully morphology: a study from cratonic part of eastern India, Journal of Environmental Science And Pollution Research, 9(34): 85-99
Nazari Samani, A., Ahmadi H., Jafari, M., Boggs, G., Ghoddousi, J., Malekian,A. (2009). Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed). Journal of Asian Earth Sciences, 35(2): 180-189.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.
Poesen, J, Nachtergaele, J, Verstraeten G, Valentin C. (2003). Gully erosion and environmental change: importance and research needs. CATENA, 50(2): 91-133.
Rahmati, O, Haghizadeh, A, Pourghasemi, H.R, & Noormohamadi, F. (2016), Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2), 1231-1258.
Shit, P, K, Paira, R., Bhunia, G, Maiti, R. (2015). Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1(1-2), 2.129.
Valentin, C, Poesen, J, Li Y. (2005). Gully erosion: Impacts, factors and control. CATENA, 63(2): 132-153.
Masoudi M., Zakerinejad R (2011). A new model for assessment of erosion using desertification model ofIMDPA in Mazayjan plain, Fars province, Iran. Ecol Environ Conserv 17(3): 489–594.
Zakerinejad, R, Maerker, M. (2014). Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain,Southwest Iran. Geografia Fisica e Dinamica Quaternaria, 37(1): 67- 76.
Zakerinejad R, Maerker M. (2015). An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards, 79(1): 25-50.
Zakerinejad, R., Omran, A., Hochschild, V., Maerker, M. (2018). Assessment of gully erosion in relation to lithology in the Southwestern Zagros Mountains, Iran using ASTER data, GIS and stochastic modeling. Geografia Fisica Edinamica Quaternaria, 41(2): 95-104.
Zakerienjad R, Masoud M (2020). Quantitative mapping of desertification risk using modified MEDALUS model: a case study in the Mazayejan Plain, Southwest Iran. AUC Geographica 54(2), 232–239.
Zhu, A. X., Wang, R., Qiao, J., Qin, C. Z., Chen, Y., Liu, J., Du, F., Lin, y., & Zhu, T. (2014). An expertknowledge- based approach to landslide susceptibility mapping using GIS and fuzzy logic, Geomorphology, 7,pp: 128-138.
Zakerinejad, R, Christian, S, Volker, H, Michael, M, (2021). Spatial Disterbution Of Water Erosion Using Stochastic Modeling In The Southern Isfahan Province, Iran, Geogr FIS DIN QUAT 44 (2): 203 -216.