Assessing the level of vulnerability of urban areas against earthquake crisis using weighted overlay technique and RADIUS model (case study: Ardabil city)

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Geography and Urban Planning, Astara Branch, Islamic Azad University, Astara, Iran.

2 Assistant Professor, Department of Geography, Astara Branch, Islamic Azad University, Asrata, Iran

3 Assistant Professor, Department of Natural Geography, Islamic Azad University, Astara Branch, Astara, Iran

4 Associate Professor, Department of Geography, Astara Branch, Islamic Azad University, Astara, Iran

Abstract

Earthquake is considered as one of the most catastrophic and destructive types of natural hazards that cause extensive damage to property and assets, especially in urban areas, and cause many human casualties by destroying buildings and urban infrastructure. Therefore, the first and most basic step in crisis management in order to reduce the effects of an earthquake is to identify vulnerable levels against this crisis. In this regard, the present research was written with the aim of evaluating the level of vulnerability of Ardabil city against the earthquake crisis. The research method in the present study is mixed (quantitative and qualitative) with practical purpose and analytical and exploratory nature. The statistical population of the research also included managers and elites of Ardabil city, and the sample size was determined through the Delphi method of 20 experts. Also, in line with information analysis, have been used AHP technique in Expert Choice software, Weighted Overlay method in GIS software, and RADIUS damage estimation model. The findings of the research show that by examining 15 criteria, the criteria of distance from the fault, proximity to hazardous uses and access to service centers have the most importance (influence) to assess vulnerability to earthquakes. Also, according to the evaluation of the examined criteria and its integration in the fuzzy overlay method, it was found that about 13% of the tissue of Ardabil city is in the zone of very high vulnerability and about 18% is in the zone of high vulnerability. On the other hand, the results of the RADIUS model show that 13853 buildings are subject to destruction, 36% of them are in region 1 and 29% of them are in region 4. Also, the number of injured in the possible earthquake is estimated to be 67117 and the number of dead is 3113.

Keywords

Main Subjects


زلزله به‌عنوان یکی از فاجعه‌بارترین و مخرب‌ترین انواع مخاطرات طبیعی محسوب می‌گردد که با خرابی ساختمان‌ها و زیرساخت‌های شهری، خسارت‌های گسترده‌ای را به اموال و دارایی‌ها به‌ویژه در نواحی شهری وارد کرده و تلفات انسانی بسیاری را موجب می‌گردد. بنابراین اولین و اساسی‌ترین مرحله در راستای برنامه‌ریزی و مدیریت بحران به‌منظور کاهش اثرات زلزله، شناسایی سطوح آسیب‌پذیر در برابر این بحران می‌باشد. در این راستا، تحقیق حاضر با هدف ارزیابی سطح آسیب‌پذیری شهر اردبیل در برابر بحران زلزله نگارش شده است. روش تحقیق در مطالعه‌ی حاضر آمیخته (کمی و کیفی) با هدف کاربردی و ماهیت تحلیلی و اکتشافی می‌باشد. جامعه‌ی آماری تحقیق نیز شامل مدیران و نخبگان شهر اردبیل بوده که حجم نمونه از طریق روش دلفی خبرگان 20 تعیین گردیده است. همچنین در راستای تجزیه و تحلیل اطلاعات از تکنیک AHP در نرم‌افزار Expert Choice، روش Weighted Overlay در نرم‌افزار GIS و همچنین مدل تخمین خسارت RADIUS استفاده شده است. یافته‌های تحقیق نشان می‌دهد که با بررسی 15 معیار، معیارهای فاصله از گسل، همجواری با کاربریهای خطرزا و دسترسی به مراکز ،خدمات‌رسان بیشترین اهمیت (تأثیر) را جهت ارزیابی آسیب‌پذیری در برابر زلزله داشته‌اند. همچنین با توجه به ارزش‌گذاری معیارهای مورد بررسی و تلفیق آن در روش همپوشانی فازی مشخص گردید که حدود 13 درصد از بافت شهر اردبیل در پهنه‌ی آسیب‌پذیری خیلی‌زیاد و حدود 18 درصد در پهنه‌ی آسیب‌پذیری زیاد قرار دارند. از طرفی نتایج مدل RADIUS نشان می‌دهد که تعداد 13853 ساختمان در معرض تخریب قرار دارند که 36 درصد آنها در منطقه 1 و 29 درصد آنها در منطقه 4 می‌باشند. همچنین تعداد مجروحان در زلزله‌ی احتمالی 67117 و تعداد کشته‌شدگان 3113 برآورد شده است.          

 
 Esmailpour, Marzieh; Lalepour, Manijeh and Mamghani, Samaneh (2019). Assessing the vulnerability of Tabriz housing to earthquake hazards (case study: District 10 of the municipality). Geography and Planning, 26(82), 27-48. [In persian]
 Pourmohammadi, Mohammad Reza and Karami, Mohammad Reza. (2014). Combining the Kernel Model (KDE) and AHP Model in Assessing Earthquake Risk in Marginal and Deteriorated Urban Textures with the Help of Geographic Information System (GIS), Case Study of Districts One and Five of Tabriz City. Geography and Planning, 18(50), 55-88. [In persian]
Jafarnia, Afshin; Khorrambakht, Ahmad Ali and Ghanbari, Abdol Rasoul. (2019). Zoning of Earthquake Vulnerability Using Fuzzy Logic in GIS, Case Study of Lar City. Physical Geography, 12(43), 122-105. [In persian]
Khodadi Jaid, Shahin and Porzinelli, Saeed. (1401). Seismic zoning of Erbil city using deterministic hazard analysis and fuzzy system. Civil Engineering Modares, 22(2), 57-43. [In persian]
 Khedmatzadeh, Ali; Mousavi, Mirnajef and Yousefzadeh, Ardeshir. (1400). Analysis of urban vulnerability indices with earthquake crisis management approach (case study: Urmia city). Human Settlement Planning Studies, 16(54), 62-43. [In persian]
Ghazanfarpour, Hossein; Hosseinikhah, Hossein and Kamali Baghrahi, Esmaeil. (1402). Seismic risk and vulnerability analysis of human settlements in Basht county using fuzzy Dematel model and GIS. Natural Environment Hazards, 12(35), 36-21. [In persian]
 Qaedrahmati, Safar and Aziminia, Babak (2017). Assessment of density and its relationship with seismic vulnerability (case study: District 4 of Tehran Municipality). Geography and Planning, 21(61), 298-279. [In persian]
Meshksar, Parisa; Izadi, Hassan; Soltani, Ali and Bazrgar, Mohammad Reza. (2013). Assessment of physical vulnerability of urban textures to earthquakes using the RADIUS method (case study: District 3 of Shiraz Municipality). Geographical Research in Urban Planning, 1(1), 115-129.
     [In persian]
 Meshksar, Parisa; Pashagar, Yaghoub and Shamsaldini, Ali. (2018). Assessment of seismic vulnerability spectrum using human casualties criterion (case study: District 3 of Shiraz Metropolitan City). Danesh Shahr-e-Sari, 2(3), 113-99. [In persian]
 Mirdehghan Ashkazari, Seyed Ahmad; Al-Madrasi, Seyed Ali; Rezaei, Mohammad Reza; Nawan Bashangian and Mohammad Reza, Khabazi, Mustafa. (1401). Assessment and analysis of the vulnerability of Yazd city to earthquakes using hybrid models. Environmental Risk Management, 9(3), 217-205.[In persian]
Aoki, Y. (2014). More Schooling, Less Youth Crime? Learning from an Earthquake in Japan. IZA Discussion Paper, No. 8619.
Brusa, E., Chesi, C., & Torre, S.D. (2023). Securing the church of Madonna del Sole during the emergency phase of 2016 earthquake: interoperability of different actors as an instrument for reducing seismic risk of damaged built heritage. Procedia Structural Integrity, 44, 275–282.
Cas, A. G., Frankenberg, E., Suriastini, W., & Thomas, D. (2014). The impact of parental death on child well-being: evidence from the Indian Ocean tsunami. Demography, 51(2), 437-457.
Ceferino, L., Mitrani-Reiser, J., Kiremidjian, A., Deierlein, G., & Bambar´en, C. (2020). Effective plans for hospital system response to earthquake emergencies. Nature Communications, 11(1), 1–12.
Chen, L., & Miller-Hooks, E. (2012). Optimal team deployment in urban search and rescue. Transportation Research Part B: Methodological, 48(8), 984–999.
Chen, T.L., & Lin, Z.H. (2021). Impact of land use types on the spatial heterogeneity of extreme heat environments in a metropolitan area. Sustainable Cities and Society, 72, 1-11.
Cremen, G., Bozzoni, F., Pistorio, S., & Galasso, C. (2022). Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering & System Safety, 218, 1-13.
Deverell, E., Alvinius, A., & Hede, S. (2019). Horizontal collaboration in crisis management: an experimental study of the duty officer function in three public agencies. Risk, Hazards & Crisis in Public Policy, 10(4), 484–508.
Dong, L., & Shan. J. (2013). A Comprehensive Review of Earthquake Induced Building Damage Detection with Remote Sensing Techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 85-99.
Eriksson, K. (2023). Organisational learning without fire? Risk analyses as a basis for developing crisis management capabilities. Safety Science, 163, 1-8.
Faturechi, R., & Miller-Hooks, E. (2015). Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. Journal of Infrastructure Systems, 21(1), 1-13.
Gehl, P., Auclair, S., Fayjaloun, R., & Meresse, P. (2022a). Decision support for emergency road traffic management in post-earthquake conditions. International Journal of Disaster Risk Reduction, 77, 1-16.
Gehl, P., Fayjaloun, R., Sun, L., Tubaldi, E., Negulescu, C., Ozer, E., & D’Ayala, D. (2022b). Rapid earthquake loss updating of spatially distributed systems via sampling-based Bayesian inference. Bulletin of Earthquake Engineering, 20, 3995–4023.
Gulati, B., (2006). Earthquake Risk Assessment of Buildings Applicability of HAZUS in Dehradun, India. M.Sc Thesis, International Institute for Geo- information Science and Earth Observation, Supervisors: M.J.G. Mark Brussel, Sandeep Maithani and Cees J van Westen.
Haitao, L., Dongqing, Z., & Zhaoxia, G. (2017). Comparison study on two post-earthquake rehabilitation and reconstruction modes in China. International Journal of Disaster Risk Reduction, 23, 119-130.
Heilig, G.K. (2011). World Urbanization Prospects: The 2011 Revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section: New York, NY, USA.
Heinzlef, C., Robert, B., H´emond, Y., & Serre, D. (2020). Operating urban resilience strategies to face climate change and associated risks: Some advances from theory to application in Canada and France. Cities, 104, 1-15.
Jaiswal, K., & Wald, D. (2010). An empirical model for global earthquake fatality estimation. Earthquake Spectra, 26(4), 1017-1037.
Kapucu, N., Ge, Y., Martín, Y., & Williamson, Z. (2022). Urban resilience for building a sustainable and safe environment. Urban Governance, 1, 10–16.
Kreimer, A., Arnold, A., & Carlin, A. (2003). Building safer cities, the future of disaster risk, Disaster risk management series. The World Bank.
Linares, R., & Alejandra, R. (2012). Panama Prepares the City of David for Earthquakes. Project highlights, 9, 1-4.
Normandin J.M., Therrien M.C., & Tanguay G.A. (2011). City strength in times of turbulence: strategic resilience indicators. Urban Affairs Association41st Conference, New Orleans.
Olsen, M., Oskarsson, P-A., Jallberg, N., Granasen, M., & Nordstrom, J. (2023). Exploring collaborative crisis management: A model of essential capabilities. Safety Science, 162, 1-13.
Ozdagoglu, G., & Ozdagoglu, A. (2007). Comparison of AHP and Fuzzy AHP for the multicriteria decision making processes with linguistic evaluations. Istanbul Ticaret Universitesi Fen Bilimleri Dergisi Yıl: 6 Sayı: 11 Bahar 2007/1 s. 65-85.
Pribadi, K.S., Abduh, M., Wirahadikusumah, R.D., Hanifa, N.R., Irsyam, M., Kusumaningrum, P., & Puri, E. (2021). Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia. International Journal of Disaster Risk Reduction, 64, 1-14.
Sarmah, T., & Sutapa, D. (2018). Earthquake Vulnerability Assessment for RCC Buildings of Guwahati City using Rapid Visual Screening. Procedia engineering, 212, 214-221.
Sharifi, A., & Yamagata, Y. (2014). Resilient urban planning: Major principles and criteria. Energy Procedia, 61, 1491-1495.
Tang, A., & Wen, A. (2009). An intelligent simulation system for earthquake disaster assessment. Computers & Geosciences, 35(5), 871-879.
Tielin, L., & Wei, Z. (2017). Earthquake responses of near-fault building clusters in mountain cities considering viscoelasticity of earth medium and process of fault rupture. Soil Dynamics and Earthquake Engineering, 99, 137–141.
UN educational, scientific and cultural organization (2010). UNESCO and sustainable development, at: http:// UNESCO.
Wang, X., & Liu, K. (2012). Earthquake and Mental Health, Post Traumatic Stress Disorders in a Global Context. ISBN: 978-953-307-825-0. In Tech, Available from:http://www.i ntechopen.com/books/post-traumatic-stress-disorders-in-a-global-context/earthquake-and-mental-health.
Westen, C.V., Slob, S., Montoya, L., & Boerboom, L. (2004). Application of GIS for earthquake hazard and risk assessment: Kathmandu, Nepal. International Institute for Geo-Information Science and Earth Observation, ITC, P.O. Box 6, 7500 AA Enschede, The Netherlands, pp 1-10.
Xu, J., Dai, J., Rao, R., & Xie, H. (2016). The association between exposure and psychological health in earthquake survivors from the Longmen Shan Fault area: the mediating effect of risk perception. BMC public health, 16(1), 417.
Zhou, Y., & Leung, C. (2017). The oscillatory tendency of interevent direction in earthquake sequences. Physica A: Statistical Mechanics and its Applications, 478(15), 120-130.