Analyzing the Changes in Precipitation in Northwest Iran during the Coming Decades Based on the GCM Models

Document Type : Research Paper

Authors

1 Postdoctoral Researcher of Climatology, University of Mohaghegh Ardabili, Ardabil, Iran

2 Faculty of Social Science, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

The current research was carried out to analyze the changes in precipitation in northwest Iran during the coming decades based on GCM models. For this purpose, first, the precipitation of 1985-2014 was trended based on the Mann-Kendall test. Then, the daily precipitation data for each of the studied stations was simulated in SDSM6.1 software for 1985-2014. Then, under the scenarios (SSP2-4.5) and (SSP5-8.5) of CanEsm5 and MPI-ESMI-2HR models, the precipitation of 2015-2043 was predicted. To evaluate the performance of CMIP6 models and compare the basic and predicted values, MSE, RMSE, and MAE statistical measures were used. According to the results of the Man-Kendal test, the precipitation of the base period in the stations of Tabriz, Ardabil, Urmia, Takab, and Maragheh has a decreasing trend and in the stations of Meshginshahr, Sardasht, Mako, Khalkhal, Sarab, Jolfa, and Parsabad it has an increasing trend. Among the 12 investigated stations, only the Maragheh station had a significant decreasing trend. In other stations, precipitation trends were not significant. According to the predictions made based on the mentioned models, under the medium scenario (SSP 2-4.5), the precipitation will decrease in late winter and early spring. In other months, especially summer and autumn months, the percentage of precipitation will be higher. Based on the SSP5-8.5 scenario, the highest percentage of precipitation decrease in the MPI model was predicted by 33% in Jolfa, Sardasht, and Maragheh stations, and in the CanESM5 model, about 33-35% in Jolfa, Takab, and Urmia stations. According to the results, although both models predicted precipitation with a relatively high error, the MPI model had a lower error and more accuracy in predicting precipitation than the CanESM5 model.

Keywords

Main Subjects


پژوهش حاضر با هدف واکاوی تغییرات بارش شمال غرب ایران طی دهه­های آتی بر اساس مدل­های GCM صورت گرفته است. بدین منظور، ابتدا بارش سال­های 2014-1985 بر اساس آزمون من- کندال روندیابی گردید. سپس داده­های روزانه بارش برای هر یک از ایستگاه­های مورد مطالعه در نرم‌افزار SDSM6.1 برای 2014-1985 شبیه‌سازی ‌شد. آنگاه تحت سناریوهای (SSP2-4.5) و (8.5-SSP5) مدل­های CanEsm5 و MPI-ESMI-2HR، بارش سال‌های 2043-2015 پیش­بینی شد. جهت ارزیابی عملکرد مدل­های CMIP6 و مقایسه­ مقادیر پایه و پیش‌بینی‌شده، از سنجه­های­ آماری MSE،RMSE  و MAE استفاده شد. بر اساس نتایج آزمون من- کندال، بارش دوره پایه در ایستگاه­های تبریز، اردبیل، ارومیه، تکاب و مراغه دارای روند کاهشی و در ایستگاه­های مشگین­شهر، سردشت، ماکو، خلخال، سراب، جلفا و پارس‌آباد دارای روند افزایشی بود. از بین 12 ایستگاه مورد بررسی، فقط بارش ایستگاه مراغه روند کاهشی معنادار داشت. در سایر ایستگاه­ها روندهای بارش معنی­دار نبود. بر اساس پیش­بینی­های انجام شده بر اساس مدل­های مذکور، تحت سناریوی متوسط (SSP 2-4.5)، در اواخر زمستان و اوایل بهار، بارش کاهش  خواهد یافت. در سایر ماه­ها به‌ویژه ماه­های تابستان و پاییز، درصد کاهش بارش بیشتر خواهد بود. بر اساس سناریوی 8.5-SSP5، بیشترین درصد کاهش بارش در مدل MPI به میزان 33%  در ایستگاه­های جلفا، سردشت، مراغه و در مدل CanESM5 حدود 33 الی 35 درصد در ایستگاه­های جلفا، تکاب و ارومیه پیش­بینی گردید. طبق نتایج حاصل، اگرچه هر دو مدل، بارش را با خطای نسبتاً بالایی پیش­بینی نمودند، لیکن مدل MPI نسبت به مدل CanESM5 خطای کمتر و دقت بیشتری در پیش‌بینی بارش داشت

  • Bates, B., Kundzewicz, Z.W., Wu, S. and Palutikof, J. (2008). Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC), 200 pages.
  • Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., Jiang, J. (2020). Global land monsoon precipitation changes in CMIP6 projections. Geophysical Research Letters, 47(14), pp 1-9.
  • Cui, T., Li, Ch., Tian, F. (2021). Evaluation of Temperature and Precipitation Simulations in CMIP6 Models over the Tibetan Plateau, Earth and space science, Volume8, Issue7.
  • De Oliveira, V. A., de Mello, C. R., Beskow, S., Viola, M. R. and Srinivasan, R., (2019). Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado biome, Ecological Engineering, 133, 20–31.
  • Diress, S. A., Bedada, T. B. (2021). Precipitation and Temperature trend analysis by Mann Kendall test: The case of Addis Ababa methodological station, Addis Ababa, Ethiopia. African Journal on Land Policy and Geospatial Sciences, 4(4), pp 517-526.
  • Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stouffer, R. J., Taylor, K. E. (2015). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development Discussions, 8(12), pp 1937-1958.
  • Greene, A.M., Goddard, L. and Lall, L. (2006). Probabilistic multi-model regional temperature change projections. Clim. 19: 4326-4346.
  • Gupta, V., Singh, V., Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 590, DOI: 10.1016/j.jhydrol.2020.125422.
  • IPCC, (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson-Delmotte, V., P. Zhai, A. Pirani,L. Connors, C. Péan, S. Berger, N. Caud Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds) Cambridge University Press.
  • (2013). Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on ClimateChange [Stocker,T.F.,Qin,D.,Plattner,G.K.,Tignor,M.,Allen,S.K.,Boschung,J.,Nauels,A.,Xia,Y.,Bex,V.,andMidgley,P. M.,(eds.)]. Cambridge University Press, Cambridge, Unitesd Kingdom and New York, NY, USA, pp 1535.
  • Kim, B.S., Kim, H.S., Seoh, B.H. Kim, N.W. (2007). Impact of climate change on water resources in Yongdam Dam Basin, Korea. Stochastic Environmental Research and Risk Assessment, 21: 355–373.
  • Kwesi Nooni, , Katchele Ogou, F.,  Saidou Chaibou., A. A.,  Nakoty. F. M.,  Gnitou, G.T.,  Lu, J. (2023). Torical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation, Journals Atmosphere,Volume 14 (3), 607.  
  • Lei, Xiaoni ., Xu, Changchun ., Liu, , Song, Lingling ., Cao, Linlin ., Suo, Nanji . (2023) Precipitation over Arid Central Asia, Remote Sens., 15(9), 2376.
  • Li, Y., Yan, D., Peng, H., & Xiao, S. (2021). Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmospheric Research, 253, 105406.
  • Mason, S.J. (2004). Simulating climate over western North America using stochastic weather generators. Change. 62:155-187.
  • Mc Carthy, J.J., Canziani, O, F., Leary, N.A., Dokken, D.J., White K.S. (2001). Impacts adaptation and vulnerability. Intergovernmental Panel on climate change. Working Group II. Cambridge University Press, P.45
  • Menon, A., Levermann, A., Schewe, J., Lehmann, J., Frieler, K. (2013). Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth System Dynamics, 4(2), pp 287-300.
  • Mesgari, E., Hosseini, S A., Hemmesy, M S., Houshyar, M., Golzari Partoo, L. (2022) Assessment of CMIP6 models’ performances and projection of precipitation based on SSP scenarios over the M ENAP region, Journal of Water and Climate Change (2022) 13 (10): 3607–3619.
  • Nasidi, N. M., Wayayok, A., Abdullah, A. F., Mohd Kassim, M. S. (2021). Dynamics of potential precipitation under climate change scenarios at Cameron Highlands, Malaysia. SN Applied Sciences, 3(3), pp 1-17.
  • Ngoma, , Wen, W., Ayugi, B., Babaousmail, H., Karim, R, Ongoma, V. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda, Royal Meteorological Society, 41 (9), pp 4743-4768.
  • Nilawar, A. P. and Waikar, M. L. (2019). Impacts of climate change on stream flow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India, Science of Total Environment, 650, 2685–2696.
  • Sung, H.M., Kim, J., Shim, S. (2021). Climate Change Projection in the Twenty-First Century Simulated by NIMS-KMA CMIP6 Model Based on New GHGs Concentration Pathways. Asia-Pacific J Atmos Sci, 57, 851–862.
  • Turgay, P. & Ercan K (2005). Trend Analysis in Turkish Precipitation data. Hydrological processes published online in Wiley Interscience. 20(9):2011 – 2026.
  • Zhou B, Lauwaet D, Hooyberghs H, De Ridder, Kropp K, D- Rybski J. (2016). Assessing Seasonality in the Surface Urban Heat Island of London, Journal of Applied Meteorology and Climatology. 55, pp 493-505. https://doi.org/10.1175/JAMC-D-15-0041.1