Edible parks are an innovative strategy for enhancing environmental comfort and promoting sustainable urban development

Document Type : Research Paper

Authors

1 Urban Planning/ Department of Urban Planning/ University of Tabriz/ Tabriz/ Iran

2 Department of Landscape Engineering Agricultural Faculty University of Tabriz

3 Department of the Environment and Biodiversity, University of Salzburg, Salzburg, Austria

Abstract

Objective

Edible parks are an innovative strategy for revitalizing urban agricultural lands and promoting the sustainable development of cities. As multifunctional green infrastructure, they have the potential to improve air quality, reduce the effects of urban heat islands, and enhance food security through the production of local food and the strengthening of social engagement. These spaces contribute to urban resilience in the face of environmental and economic challenges.

Methods

This study utilized microclimatic simulation through ENVI-MET software, designed with three scenarios: bare land, agricultural land, and a combination of trees and crops in a large park at the urban agricultural site of Hokmabad. The simulation lasted 8 hours (from 10:00 to 18:00) on July 10, 2020, the hottest day of the year.

Results

The findings reveal that the edible park approach in this area, by preserving the structure of the study site, significantly reduced carbon dioxide concentrations—0.115 ppm in the agricultural land simulation and 2.69 ppm in the tree and crop combination scenario. Crop cultivation, on average, resulted in a reduction of 1.33 degrees in radiant temperature, while the combination of trees and crops reduced it by 10.26 degrees compared to bare land, marking a step toward urban climate improvement. Additionally, increasing vegetation in these spaces plays a crucial role in reducing environmental pollutants and enhancing urban air quality.

Conclusions

The results of this research demonstrate that integrating urban agriculture and developing edible parks, beyond meeting food needs, is an effective tool for improving cities' environmental and economic conditions. Edible parks not only serve as a solution to mitigate the negative effects of urbanization but also act as a driving force for sustainable urban development and the improvement of citizens' quality of life, offering a viable model for other cities to follow.

Keywords

Main Subjects


هدف: ادیبل پارک‌ها به‌عنوان راهکاری نوآورانه برای احیای اراضی کشاورزی شهری و توسعه پایدار شهرها می باشد. چراکه به‌عنوان زیرساخت‌های سبز چندمنظوره، قادر به بهبود کیفیت هوا، کاهش اثرات جزایر گرمایی شهری، و ارتقای امنیت غذایی از طریق تولید مواد غذایی محلی و تقویت مشارکت‌های اجتماعی دارد ، این فضاها به ایجاد تاب‌آوری شهری در برابر چالش‌های زیست‌محیطی و اقتصادی کمک می‌کنند.

روش پژوهش: این مطالعه با استفاده از شبیه سازی میکرواقلیمی در نرم‌افزار ENVI-MET،  با طراحی سه سناریو شامل زمین خالی از پوشش‌گیاهی، اراضی کشاورزی، و ترکیب درختان با محصولات زراعی در پارک بزرگ ، محل اراضی کشاورزی شهری حکم آباد، به مدت 8 ساعت(10:00تا18:00) در تاریخ 10 تیرماه سال99به عنوان گرم‌ترین روز سال صورت گرفت است.

نتایج : یافته‌ها نشان می‌دهد که رویکرد ادیبل در این پارک با حفظ ساختار منطقه مورد مطالعه از طریق کاهش چشمگیر غلظت دی‌اکسید کربن در شبیه‌سازی اراضی کشاورزی 115/0 ppmو در سناریوی ترکیب درختان و محصولات زراعی69/2ppm را سبب شده است در این میان کشت محصولات زراعی به طور میانگین سبب کاهش33/1 درجه ضریب تابشی و ترکیب درختان و محصولات زراعی موجب کاهش 26/10 درجه‌ای این ضریب نسبت به زمین‌های بدون پوشش گیاهی شده که گامی در جهت بهبود اقلیم شهری می باشد. علاوه بر این، افزایش پوشش گیاهی در این فضاها نقش بسزایی در کاهش آلاینده‌های زیست‌محیطی و ارتقای کیفیت هوای شهری دارد.

نتیجه‌گیری: نتایج این پژوهش  نشان می‌دهد که ادغام کشاورزی شهری و توسعه ادیبل پارک‌ها، فراتر از تأمین نیازهای غذایی، ابزار مؤثری برای بهبود شرایط زیست‌محیطی و اقتصادی شهرها است. ادیبل پارک‌ها نه تنها به عنوان راهکاری برای کاهش اثرات منفی شهرنشینی عمل می‌کنند، بلکه به عنوان نیروی محرکه‌ای برای توسعه پایدار شهری و بهبود کیفیت زندگی شهروندان، می‌توانند الگوی موثری برای سایر شهرها باشند

Jahanbin, Khezr Nejad, Pakhshan. (2019). Understanding the standards of planning green spaces and their location in order to achieve ecological efficiency of cities (Case study: Tabriz city). Environmental Science and Technology, 21(5), 163-1[In persian]
Rahimi, Akbar, Nobar, Zahra. (1403). Investigating the role of cover plants (grass) in improving physiological equivalent temperature and relative humidity (Study area: Tabriz University Stadium). Agricultural Knowledge and Sustainable Production, 34(1), 187-204.
doi: 10.22034/saps.2023.53515.2930[In persian]
Khoshsimay Sardrood, Mahsa, Asghari Zamani, Akbar, & Roustaei, Shahrivar. (2019). Investigating the role of interstitial development in the reconstruction of worn-out urban textures (Case study: Hokambad neighborhood, Tabriz). Geography and Planning, 24(72), 183-204. doi: 10.22034/gp.2020.10834[In persian]
Ziari, K., Hamidi, K. (1403). Analysis of factors affecting urban land use changes (case study: Urmia city). Geography and Planning doi: 10.22034/gp.2024.60785.3240[In persian]
Valizadeh, Reza, and Dadash Pourmoghaddam, Majid. (2019). Urban design and planning methods for sustainable development. Shabak, 5(7 (46th issue), 49-60. SID. https://sid.ir/paper/520199/fa[In persian]
Darbandi, N., Pourmohammadi, M., Ghorbani, R. (1402). Study and evaluation of urban land use pattern change with ecological footprint approach (case study: Tabriz metropolis). Geography and Planning doi: 10.22034/gp.2023.55429.3103.[In persian]
Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 116, S119–S126. doi: 10.1016/S0269-7491(01)00264-0
Ali, S. B., & Patnaik, S. (2018). Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban climate, 24, 954-967.‏
Ali-Toudert, F., & Mayer, H. (2007). Thermal comfort in an east–west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theoretical and applied climatology, 87, 223-237.‏
Appleton, M. R., Courtiol, A., Emerton, L., Slade, J. L., Tilker, A., Warr, L. C., ... & Long, B. (2022). Protected area personnel and ranger numbers are insufficient to deliver global expectations. Nature Sustainability, 5(12), 1100-1110.‏
Aslam, A., and Rana, I. A. (2022). The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Clim. 42:101120. doi: 10.1016/j.uclim.2022.101120
Beatley, T. (2011). Biophilic cities: integrating nature into urban design and planning. Island Press.‏
Beatley, T. (2017). Blue biophilic cities: nature and resilience along the urban coast. Springer.‏
Bemanian, M. and Mahmoudi Nejad, H., 2008.Urban welfare oriented towards improving the quality of life. Te mMunicipal and Vllage Administrations Publishing, Tehran.
Binarti, F., Koerniawan, M. D., Triyadi, S., Utami, S. S., & Matzarakis, A. (2020). A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Climate, 31, 100531.‏
Binarti, F., Koerniawan, M. D., Triyadi, S., Utami, S. S., & Matzarakis, A. (2020). A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Climate, 31, 100531.‏
Binh, T. N. K. D., Vromant, N., Hung, N. T., Hens, L., & Boon, E. K. (2005). Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau peninsula, Vietnam. Environment, Development and Sustainability, 7, 519-536.‏
Bröde, P., Krüger, E. L., Rossi, F. A., & Fiala, D. (2012). Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil. International journal of biometeorology, 56, 471-480.‏
Bruse, M. (2004). ENVI-met 3.0: updated model overview. University of Bochum. Retrieved from: www. envi-met. com, 3.‏
Celis, A. M. C., and Frederico, C. (2018). Protocolo de elaboração de arquivo climático de cidades brasileiras para o software ENVI-met 4.0. Paranoá. 22, 32–50.
Chang, C., Li, X., Duanmu, L., Sun, B., & Ju, H. (2024). Analysis of the impact of indoor thermal comfort data characteristics on dataset quality. Energy and Buildings, 310, 114079.‏
Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., ... & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242.‏ https://doi.org/10.1038/35012241
Cheng, B., Gou, Z., Zhang, F., Feng, Q., & Huang, Z. (2019). Thermal comfort in urban mountain parks in the hot summer and cold winter climate. Sustainable Cities and Society, 51, 101756.‏
Davis, Z., Nesbitt, L., Guhn, M., & van den Bosch, M. (2023). Assessing changes in urban vegetation using Normalised Difference Vegetation Index (NDVI) for epidemiological studies. Urban Forestry & Urban Greening, 88, 128080.‏
Duc Uy P., Nakagoshi N., 2008, Application of land suitability analysis and landscape ecology to urban green space planning in Hanoi, Vietnam. Landscape Ecology Journal, No 29, pp 120-128.
EEA  European  Environment   Agency.,  2006,  EEA  Glossary.  Retrieved  November  24. http://glossary. eea.eu.int/EEAGlossary/D/DPSIR.
El-Bardisy, W. M., Fahmy, M., and El-Gohary, G. F. (2016). Climatic sensitive landscape design: towards a better microclimate through plantation in public schools, Cairo. Egypt. Proc. Soc. Behav. Sci. 216, 206–216. doi: 10.1016/j.sbspro.2015.12.029
Ettehadi Osgouei, P., & Kaya, S. (2017). Analysis of land cover/use changes using Landsat 5 TM data and indices. Environmental monitoring and assessment, 189, 1-11.‏
Fiedler P L., White P S., Leidy R A., 1997, A Paradigm Shift in Ecology and its Implications for Conservation, Chapman and Hall, New York. USA.
Forman R T T., 1995, Land Mosaics: The Ecology of Landscapes and Regions, Cambridge Univ. Press, Cambridge. UK.
Gong, C., Lei, Y., Ma, Y., Yue, X., & Liao, H. (2020). Ozone–vegetation feedback through dry deposition and isoprene emissions in a global chemistry–carbon–climate model. Atmospheric Chemistry and Physics, 20(6), 3841-3857.‏
Greene, C. S., & Kedron, P. J. (2018). Beyond fractional coverage: A multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands. Applied Geography, 95, 45-53.‏
Grey, G. W., & Deneke, F. J. (1986). Urban forestry (p. 299). New York: John Wiley and Sons.‏
Gusson, C. S., & Duarte, D. H. (2016). Effects of built density and urban morphology on urban microclimate-calibration of the model ENVI-met V4 for the subtropical Sao Paulo, Brazil. Procedia engineering, 169, 2-10.‏
Hall, H. I., Leaderer, B. P., Cain, W. S., & Fidler, A. T. (1993). Mucosal irritation and thermal comfort among occupants of an office building. Environment international, 19(3), 253-259.‏
He, X., An, L., Hong, B., Huang, B., & Cui, X. (2020). Cross-cultural differences in thermal comfort in campus open spaces: a longitudinal field survey in China's cold region. Building and Environment, 172, 106739.‏
Heng, S. L., & Chow, W. T. (2019). How ‘hot’is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park. International journal of biometeorology, 63, 801-816.‏
Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002-1017.‏
Johansson, E., & Emmanuel, R. (2006). The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. International journal of biometeorology, 51, 119-133.‏
Kargapolova, N. (2020). Stochastic simulation of the spatio-temporal field of the average daily heat index in Southern Russia. Climate Research, 82, 149-160.‏
Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684.‏
Lee, C. C., & He, Z. W. (2024). The impact of green finance policy on land ecological security: City-level evidence from China. Sustainable Cities and Society, 105, 105347.‏
Lee, C. C., & He, Z. W. (2024). The impact of green finance policy on land ecological security: City-level evidence from China. Sustainable Cities and Society, 105, 105347.‏
Li Y., Li Y., Qureshi S., Kappas M., Hubacek, K., 2015, On the relationship between landscape ecological patterns and waterquality across gradient zones of rapid urbanization in coastal China. Ecological Modelling. No 20, pp 166-175.
Makhdoum M. Evaluation model for environ mental changes. Journal of Environmental Studies. 1982;11(0):25-34 (in Persian)
Marsili, V., Forti, L., & Arru, L. (2023). Unlocking Urban Insights: A Case Study on Impact of Urban Vegetation on Volatile Organic Compounds (VOCs) Variability Across Different Areas of Reggio Emilia, Italy. Global journal of botanical science, 1-13.‏
Mircea, M., Borge, R., Finardi, S., Briganti, G., Russo, F., de la Paz, D., ... & Carlino, G. (2023). The role of vegetation on urban atmosphere of three European cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions. Forests, 14(6), 1255.‏
Morakinyo, T. E., Kong, L., Lau, K. K. L., Yuan, C., and Ng, E. (2017). A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Build. Environ. 115, 1–17. doi: 10.1016/j.buildenv.2017.01.005
Pickett S T A., Parker V T., Fiedler P F., 1992, The new paradigm in ecology: implications for conservation biology above the species level. In: P. L. Fiedler and J. A. Jain (eds.)
Qureshi  S.,  Haase  D.,  Coles  R.,  2014,  The  theorized  urban  gradient  (TUG)  methodˇ aconceptual framework for socio-ecological sampling in complex urban agglomerations. Ecol. Indic, No 36, pp 100˚ 110.
Qureshi, M. E., Dixon, J., & Wood, M. (2015). Public policies for improving food and nutrition security at different scales. Food Security, 7, 393-403.‏
Rahimi, A., & Nobar, Z. (2023). The impact of planting scenarios on agricultural productivity and thermal comfort in urban agriculture land (case study: Tabriz, Iran). Frontiers in Ecology and Evolution, 11, 1048092.‏
Rahimi, A., & Nobar, Z. (2024). Investigating the role of cover plants (grass) in improving the physiological equivalent temperature and relative humidity (study area: Tabriz University Stadium). JOURNAL OF AGRICULTURAL SCIENCE AND SUSTAINABLE PRODUCTION, 34(1), 187-204
Ramírez-Delgado, J. P., M. Di Marco, J. E. M. Watson, C. J. Johnson, C. Rondinini, X. C. Llano, M. Arias, and O. Venter. 2022. “Matrix Condition Mediates the Effects of Habitat Fragmentation on Species Extinction Risk.” Nature Communications 13 (1): 595.  https://doi.org/10.1038/s41467-022-28270-3.
Salata, F., Golasi, I., de Lieto Vollaro, R., and de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 26, 318–343. doi: 10.1016/j.scs.2016.07.005
Säumel, I., Hogrefe, J., Battisti, L., Wachtel, T., & Larcher, F. (2021). The healthy green living room at one’s doorstep? Use and perception of residential greenery in Berlin, Germany. Urban Forestry & Urban Greening, 58, 126949.‏
Schell  L  M.,  Ulijaszek  S  J.,  1999,  Urbanism,  health  and  human  biology  in  industrialized countries, Cambridge University Press, UK.
Schreiber  K  F.,  1987,  Connectivity  in  landscape ecology,  International  Association  of Landscape Ecology. 5th  Urban Ecology International Conference, Paris.
Simon, A., Geitner, C., & Katzensteiner, K. (2020). A framework for the predictive mapping of forest soil properties in mountain areas. Geoderma, 371, 114383.‏
Toska, J., Ho, B. T., & Mekalanos, J. J. (2018). Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proceedings of the National Academy of Sciences, 115(31), 7997-8002.‏
Tsoka, S., Tsikaloudaki, A., and Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 43, 55–76. doi: 10.1016/j.scs.2018.08.009
Varzakas, T., & Antoniadou, M. (2024). A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. Foods, 13(8), 1224.‏
Venhari, A. A., Tenpierik, M., & Hakak, A. M. (2017). Heat mitigation by greening the cities, a review study. Environment, Earth and Ecology, 1(1).‏
Xie, Q., Zhou, Z., & Chen, F. (2011). QUANTIFYING THE BENEFICIAL EFFECT OF DIFFERENT PLANT SPECIES ON AIR QUALITY IMPROVEMENT. Environmental Engineering & Management Journal (EEMJ), 10(7).‏
Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote sensing, 4(7), 2033-2056.‏
Xu, M., Hong, B., Jiang, R., An, L., & Zhang, T. (2019). Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China. Building and Environment, 155, 408-420.‏
Zabardast, Esfandiar. 2007. Textbook of Urban Planning Methods. Tehran: Faculty of Urban Planning, Fine Arts Campus,University of Tehran.
Zenouzi, A. S., Yenneti, K., Teimouri, R., Abbasiyan, F., & Palme, M. (2022). Analysis of changes in vegetation index during the rapid urban spatial development period (1990–2020) in Tehran metropolis, Iran. Atmosphere, 13(12), 2010.‏
Zhang, Y., Chen, L., Sun, C., Fu, Y., & Xie, Y. (2023). An investigation of the influence of the morphological indexes of trees on the outdoor microclimate at high altitude in summer. Frontiers in Environmental Science, 11, 1098966.‏
Zhu, S., Li, J., He, Q., Qiu, Q., Su, Y., Lei, T., & Cui, G. (2024). Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types. Forests, 15(3), 432.‏
Mahmoudzadeh, H., Masoudi, H., Jafari, F., Khorshiddoost, A. M., Abedini, A., & Mosavi, A. (2022). Ecological networks and corridors development in urban areas: An example of Tabriz, Iran. Frontiers in Environmental Science, 10, 969266.‏