Document Type : Research Paper

Authors

1 Postdoctoral Researcher of Climatology, University of Mohaghegh Ardabili, Ardabil, Iran

2 Faculty of Social Science, University of Mohaghegh Ardabili, Ardabil, Iran

10.22034/gp.2024.59552.3212

Abstract

The current research was carried out to analyze the changes in precipitation in northwest Iran during the coming decades based on GCM models. For this purpose, first, the precipitation of 1985-2014 was trended based on the Mann-Kendall test. Then, the daily precipitation data for each of the studied stations was simulated in SDSM6.1 software for 1985-2014. Then, under the scenarios (SSP2-4.5) and (SSP5-8.5) of CanEsm5 and MPI-ESMI-2HR models, the precipitation of 2015-2043 was predicted. To evaluate the performance of CMIP6 models and compare the basic and predicted values, MSE, RMSE, and MAE statistical measures were used. According to the results of the Man-Kendal test, the precipitation of the base period in the stations of Tabriz, Ardabil, Urmia, Takab, and Maragheh has a decreasing trend and in the stations of Meshginshahr, Sardasht, Mako, Khalkhal, Sarab, Jolfa, and Parsabad it has an increasing trend. Among the 12 investigated stations, only the Maragheh station had a significant decreasing trend. In other stations, precipitation trends were not significant. According to the predictions made based on the mentioned models, under the medium scenario (SSP 2-4.5), the precipitation will decrease in late winter and early spring. In other months, especially summer and autumn months, the percentage of precipitation will be higher. Based on the SSP5-8.5 scenario, the highest percentage of precipitation decrease in the MPI model was predicted by 33% in Jolfa, Sardasht, and Maragheh stations, and in the CanESM5 model, about 33-35% in Jolfa, Takab, and Urmia stations. According to the results, although both models predicted precipitation with a relatively high error, the MPI model had a lower error and more accuracy in predicting precipitation than the CanESM5 model.

Keywords

Main Subjects