Document Type : Research Paper

Authors

1 Professor of Physical Geography (geomorphology), University of Ardebili University, Ardebil, Iran

2 Ph.D. student of Physical geography (geomorphology), University of researcher Ardabili, Ardebil, Iran

3 Professor of geomorphology, Tabriz University, Tabriz, Iran

10.22034/gp.2020.41646.2698

Abstract

Introduction
When a natural process threatens human life or property, it is called natural hazard. Disasters’ statistics have shown that their effects are, considerably, increasing all over the world. Most of such disasters originate from geomorphological events. In fact, natural disasters have been a global concern and most of them have mainly been geomorphological. Hence, developing countries, in particular, are deeply influenced by such disasters. One way of decreasing damages caused by natural disasters is identification of disaster-prone areas and prevention of their development in such areas relying on land use planning. In this research, geomorphological hazards of flood, landslide and neotectonics were investigated in Zonouzchay catchment. The catchment in an area of 323 square km has been located in political-administrative zone of Marand county.
Methodology
The aim of the present study is to evaluate geomorphological hazards in Zonouzchay catchment through preparing zoning maps of flood, landslide and neotectonics hazards. Digital evaluation model images of height (DEM), geological maps and sentinel satellite images are the most important data used in the present study. For preparation of flood and landslide hazards’ map in Zonouzchay catchment, ten variables and effective parameters on flooding and flood spreading were combined in GIS environment. These variables are considered for zoning flooding hazard factors such as height, slope, convexity of the land surface, valley depth, lithological units, drainage density, distance from the main streams, height of the runoff, use and vegetation. For zoning landslide occurrence risk, the above mentioned variables (except for stream height, drainage density and valley depth) were used along with the three variables of distance from fault, slope direction and rainfall. ANP model in GIS was used in order to combine effective variables on flooding risk and landslide in Zonouzchay catchment. Moreover, zoning relative neotecnic activities for the underlying area was conducted by using relative tectonic activity index (Al Hamdouni, et al, 2008). Relative tectonics activity index (Iat) is developed by combination of other indexes. The index classifies the perspectives in four classes of relative tectonic activities:
Class 1: too high tectonic activities with values 1 < S/n < 1.5
Class 2: high tectonic activities with values 1.5 < S/n < 2
Class 3: medium tectonic activities with values 2 < S/n < 2
Class 4: low tectonic activities with values  S/n < 2.5
Results and Discussion
Zoning Relative Tectonic Activity
Results of Iat index-basedzoning indicate that neotectonic activities in Zonouzchay catchment are, generally, medium to relatively weak. Field observations also indicate that erosive processes (in spite of resistant formations) are predominate in the study area. Lack or rare dispersion of  neotectonic landforms, retreat and destruction of mountain fronts and widening of the valleys are among the reasons, which show relative weakness of the active tectonic in  Zonouzchay catchment. The main part of the morpho-tectonic landforms of the catchment is in line with Zonouz-Harzand fault. For most of the sub-catchments Iat values are in classes 3,4, which shows average to weak status of the relative active tectonic in the catchment.
Zoning Flood Event Risk
ANP model-based results indicate that from among the employed variables, slope, distance from river and land surface convexity are, relatively, the most important variables with coefficients 0.23, 0.19 and 0.16. Findings of the study indicate that about 4% of Zonouzchay catchment area is in too high risk class, 7.4% in high risk class, 8.3% in medium risk, 21.7% in too low risk class and 58.6% is in too low risk class. Almost all upstream parts of the study catchment are in low risk to high risk classes. In the middle parts of the study catchment, flood zones are mostly bounded to two main valleys of the catchment. Width of the valleys has increased in different periods and, consequently, flood plains have been formed in the basin of such valleys. Some parts of Miyab and New Harzand villages have been located in this geomorphologic position. In the downstream parts of the catchment, width of Zonouzchay has increased considerably and also the two main streams of the study catchment join each other in this part. Presence of low slope lands, low relative height, adjacency to the main rivers, lower values of convexity index, higher density of drainage and the valley depth are considered as the most important effective factors of this part of the catchment in terms of flood event.
Landslide Risk Zoning
According to the results of ANP model, the three variables of slope with coefficient of 0.24, lithology with coefficient of 0.22 and rainfall with coefficient of 0.16 have the key influence on landslide occurrence in the study area. Hence, about 16.6 % of the catchment area is in too low risk class, about 38.1% is in low risk class, about 23% is in medium risk class, 15.8% is in high risk class and finally 6.5% is in too high risk class. Spatial distribution of the risk classes indicates concentration of high risk and too high risk classes in the middle arts of the study catchment. This can be related to various factors. Maybe, the most important reason is related to presence of geological formations prone to landslide and appropriate slopes for occurrence of such geomorphological process. In fact, in the middle parts of the study area dominance of slope 10%-40% , presence of high alluvial terraces , also occurrence of Marens , conglomerate formulations with Maren interlayers and dispersion of Flysch type have provided appropriate conditions for landslide.
Conclusion
Results of geomorphological indexes indicate that considerable part of anomalies of this index are originated from lithological differences of the area. Moreover, active tectonic zoning of the area shows relative weakness of neotectonic processes and movement of the area’s faults along with dominance of erosive processes. Regarding flood occurrence risk, results of ANP model indicated that the variables of slope, distance from river and convexity of the land surface have higher importance in flooding. From flooding occurrence perspective, about 4% of  Zonouzchay catchment is in too high risk class and 7.4% is in high risk class. The dangerous zones are accordant to valleys’ bed of the two main streams of the catchment and hence, some parts of the residents in these valleys are exposed to destructive floods. Finally, based on results of ANP model results, three variables of slope, lithology and rainfall have higher importance in probability of landslide occurrence in the study area. About 16% of Zonouzchay catchment is in high risk class, and 7% of it is in too high risk class of landslide. Landslide occurrence in the middle parts of the catchment is highly expected due to a set of conditions such as vulnerable slope and geological formations.

Keywords

Main Subjects

حاتمی­نژاد، حسین، آتش­افروز، نسرین و آروین، محمود، (1396)، پهنه‌بندی خطر سیل با استفاده از تحلیل چندمعیاره و GIS مطالعه موردی: شهرستان ایذه، فصلنامه دانش پیشگیری و مدیریت بحران، دوره 7، شماره 2، صص 44-57.
رسایی، آرمان، خسروی، خه­بات، حبیب­نژاد روشن، محمود، حیدری، ارکان و مشایخان، آرمین، (1394)، پهنه­بندی خطر زمین­لغزش با مدل رگرسیون چندمتغیره در محیط GIS (مطالعه موردی: حوزه آق مشهد، استان مازندران)، پژوهشنامه مدیریت حوزه آبخیز، سال ششم، شماره 12، صص 205- 215.
روستایی، شهرام و جانانه، کریستینه، (1398)، پهنه­بندی خطر وقوع ناپایداری دامنه­ای در حوضه آبریز بالقلوچای اردبیل با استفاده از روش سلسله­مراتبی فازی، جغرافیا و برنامه­ریزی، دوره 23، شماره 70، شماره پیاپی 23، صص 169-188.
عابدینی، موسی و بهشتی جاوید، ابراهیم، (1395)، پهنه بندی خطر وقوع سیلاب حوضه آبخیز لیقوان چای با استفاده از مدل فرآیند تحلیل شبکه و سیستم اطلاعات جغرافیایی، نشریه فضای جغرافیایی، جلد 16، شماره 55، صص 293-312.
کیانی، اکبر، فاضل­نیا، غریب و رضایی، بیت­اله، (1391)، بررسی و اولویت­سنجی مخاطرات محیط طبیعی شهر زابل، نشریه جغرافیا و مخاطرات محیطی، دوره 1، شماره 1، صص 98-111.
گیلانی­پور، علی و متولی، صدرالدین، (1394)، پهنه بندی خطر زمین لغزش های کم عمق با استفاده از روش های آماری دو متغیره و GIS (مطالعه موردی: حوضه آبخیز گلندرود)، فصلنامه اکوسیستم های طبیعی ایران، دوره 6، شماره 2، شماره پیاپی 19، صص 57-78.
مددی، عقیل، پیروزی، الناز و پرستار، سمیه، (1395)، پهنه­بندی و خطر سیلاب در حوضه آبخیز آق­لاقان چای، طرح پژوهشی، دانشگاه محقق اردبیلی.
منصوری، هاشم، وکیلی اوندری، فاطمه و خطیب، محمد مهدی، (1395)، پهنه­بندی خطر زمین لغزش به روش تحلیل سلسله مراتبی و منطق بولین در کوه باقران (جنوب بیرجند)، دوفصلنامه علمی یافته­های نوین زمین­شناسی کاربردی، دوره 10، شماره 20، صص 49-61.
موسسه ژئوفیزیک، مرکز لرزه­نگاری کشوری، (1393)، نقشه­های لرزه­خیزی استان­های ایران 2015-1900 (1393-1278).
موسوی، سیده معصومه، نگهبان، سعید، رخشانی مقدم، حیدر و حسین­زاده، سید محسن، (1395)، ارزیابی و پهنه­بندی خطر سیل­خیزی با استفاده از منطق فازی TOPSIS در محیط GIS (مطالعه موردی: حوضه آبخیز شهر باغملک)، مجله مخاطرات محیط طبیعی، سال پنجم، شماره دهم، صص 79-98.
نوجوان، محمد رضا، سادات شاه­زیدی، سمیه، داودی، محمود و امین رعایا، هاجر، (1398)، پهنه­بندی خطر زمین لغزش با استفاده از تلفیق دو مدل فرآیند تحلیل سلسله مراتبی و فازی (مطالعه موردی: حوضه آبخیز کمه، استان اصفهان)، پژوهش­های ژئومورفولوژی کمی، دوره 7، شماره 4، شماره پیاپی 28، صص 142-159.
نیری، هادی و سالاری، ممند، (1397)، ارزیابی حوضه­های آبخیز استان کردستان از منظر تکتونیک فعال با رویکرد کمی- مقایسه­ای مبتنی بر تحلیل شبکه زهکشی، جغرافیا و برنامه­ریزی، سال 22، شماره 64، صص 289-310
Adhikari, M. (2011). Bivariate statistical analysis of landslide susceptibility in western Nepal. Master thesis in geosciences. University of Oslo. pp: 1-88.
Alcántara-Ayala, I and Goudie, A.S. (2010). Geomorphological Hazards and Disaster Prevention. Cambridge University Press.
Ayalew, L and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65: 15–31.
Bull, W.B and McFadden, L.D. (1977). Tectonic geomorphology of North fault, California InDoehring (Ed.), Geomorphology of arid regions. Allen &Unwin. London. Pp:115-138.
Bull, W.B. (2007). Tectonic geomorphology of mountains: a new approach to paleoseismology. Blackwell Publishing.
Bull, W.B. (2009). Tectonically active landscapes. Wiley- Blackwell.
Choi, Jaewon., Oh, Hyun-Joo., Lee, Hong-Jin., Lee, Changwook., Lee, Saro. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering geology 124: 12-23.
Conforti, M., Pascale, S., Robustelli, G., and Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236-250.
El Hamdouni, R., Irigaray, C., Fernandez, T., Chacon, J and Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (Southern Spain). Geomorphology 96, pp: 150-173.
Fernández, D.S and Lutz, M.A. (2010). Urban flood hazard zoning in Tucumán Province Argentina, using GIS and multicriteria decision analysis. Engineering Geology No.111, PP: 90–98.
Figueroa, A. M and Knot, J. R. (2010). Tectonic geomorphology of the southern Sierra Nevada Mountains (California): Evidence for uplift and basin formation. Geomorphology 123, 34-45.
García-Soriano, , Quesada-Román, Adolfo and Zamorano-Orozco, José Juan. (2020). Geomorphological hazards susceptibility in high-density urban areas: A case study of Mexico City. Journal of South American Earth Sciences 102, 102667, 1-11.
Gemitzi, A., Falalakis, G., Eskioglou, P and Petalas, C. (2010). Evaluating landslide susceptibility using environmental factors, fuzzy membership functions and GIS. Global nest, vol.12.
Giaconia, F., Booth-Rea, Guillermo., Martínez-Martínez, José Miguel., Azañón, José Miguel., Pérez-Peña, José Vicente., Pérez-Romero, Joaquín and Villegas, Irene. (2012). Geomorphic evidence of active tectonics in the Serra Alhamila (eastern Betics, SE Spain). Geomorphology 145-146, 90-106.
Griffiths, J. S. (ed.). (2001). Land Surface Evaluation for Engineering Practice. Geological Society Engineering Geology Special Publication, 18.
Hamza, T and Raghuvanshi, T. K. (2017). GIS based landslide hazard evaluation and zonation–A case from Jeldu District, Central Ethiopia. Journal of King Saud University-Science, 29 (2), 151-165.
Hyndman, Donald and Hyndman, David. (2009). Natural Hazards and Disasters, Second Edition. Brooks/Cole, Cengage Learning.
Latrubesse, Edgardo M. (2010). Natural hazards and human-exacerbated disasters in Latin America, special volumes of geomorphology. Elsevier.
Peng, Y. (2012). Regional earthquake vulnerability assessment using a combination of MCDM methods. Annals of Operations Research volume 234, 95–110.
Perez Pena, J.V. (2009). GIS-Based tools and methods for landscape ­
Qin, Q., H. Tang and Chen, H. (2011). Zoning of highway flood-triggering environment for highway in Fuling District, Chongqing. In: 2011 International Conference on Photonics, 3D imaging, and Visualization. International Society for Optics and Photonics, pp 820530 820530-
Sanders, M. H and Clark, P. D. (2010). Geomorphology: Processes, Taxonomy and Applications. Nova Science Publishers, Inc. 216 P.
Sharma, S., P. S. Roy, V. Chakravarthi and Srinivasa, R. G. (2018). Flood risk assessment using multi-criteria analysis: a case study from Kopili River Basin, Assam, India.
Vieira, Gonçalo; Zêzere, José Luís and Mora, Carla. (2020). Landscapes and landforms of Portugal. Springer.
Willemin, J. H. and Knuepfer, Peter L.K. (1994). Kinematics of arc- continent collision in the Eastern Central Range of Taiwan inferred from geomorphic analysis. Journal of Geographical Research, pp: 1-56.
Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comp Geosci 35(6):1125–1138.
Youssef, A.M., Pradhan, B., Gaber, A.F.D and Buchroithnerm, M.F. (2009). Geomorphological hazard analysis along the Egyptian Red Sea coast between Safaga and Quseir. Natural Hazards and Earth System Sciences, 9, 751- 766.