Document Type : Research Paper

Authors

1 university of mohaghegh ardabili

2 university of shahid Beheshti

3 . PhD Student of Geomorghology, Mohaghegh Ardabili University

Abstract

Introduction
 Landslide is a term that encompasses a variety of amplitude motions and causes the movement of a mass of material in the slopes. And creep is classified. Natural slope instability is one of the geomorphological and geological phenomena that plays an effective role in deforming the earth's surface. Identifying areas with potential for landslides and their zoning is one of the key steps in managing environmental hazards and reducing the damage caused by this phenomenon, because this phenomenon causes financial and human costs, soil and land degradation and increased sediment production at the basin outlet. It becomes. Iran with its predominantly mountainous topography, high tectonic activity and seismicity, diverse geological and climatic conditions, has the most natural conditions to create a wide range of landslides. The purpose of this study is to zoning the risk of landslides on the Sarab-Nir road. In this research, two models of network analysis and fuzzy logic are examined and evaluated. It is hoped that eventually, by preparing a landslide risk zoning map, it will be of great help to planners and managers in order to reduce potential damages and find safer locations for development, construction and road construction.
Methodology
Sarab-Nir road is located between East Azarbaijan province and Ardabil province and is a communication route between these two provinces, whose geographical coordinates are 37 degrees and 94 minutes to 38 degrees and 03 minutes north latitude and 47 degrees and 53 minutes to 48 degrees and 01 minutes. It is east longitude. In this study, network analysis model was used to determine areas prone to fall and zoning. In order to better understand the causes of landslides and also to organize the research in the field, the study area was visited and 15 geographical points from different areas of the study area were recorded. The geographical location of the points prone to fall was also recorded with GPS. Then, according to the network analysis model, information layers were prepared in ArcGIS software. The information layers for landslide risk zoning are: fault, slope, slope direction, distance from road, and distance from waterway, land use, geology (lithology), precipitation, altitude and vegetation. The elevation file or digital model of the elevation of the area was prepared with an accuracy of 30 meters from the USGS site and the desired DEM is a digital file obtained from the AST‌‌ER sensor and according to this DEM, the information layer such as streams, slope and direction ‌The slope was obtained.
Results and Discussion
Four maps have been developed to investigate landslide hazards, which are rainfall, slope, elevation and land use layers. After creating information layers in order to prepare the final landslide hazard map, fuzzy information layer maps were created. In this study, in order to determine the effect of different classes of criteria on landslide sensitivity zoning, the layers are based on the type of performance of each in the landslide event using fuzzy membership functions in the range of zero to 1 fuzzy. Were made. The results obtained from the information layers and finally the landslide hazard map show that altitudes of more than 2000 meters have the highest share of landslides, and altitudes of 1400 meters have been significant landslides due to the instability of the slopes against Climatic and environmental factors. Also, most of the landslides occurred at a distance of 3 to 6 km from the faults, which shows the importance of faults against landslides. About 40% of landslides occur in very high-risk classes. This indicates that the model has a high capability in predicting landslides. It is necessary to explain that most of the landslides occur in the area of Saein pass, which have very favourable conditions for the occurrence of range movements that start from 25 km of mirage and continue for a distance of 15 km of Nir.
Conclusion
Factors such as slope, precipitation and geology play a more important role in landslides than other factors. Slopes of 60 to 80% have the greatest impact on landslides, which are more pronounced at altitudes above 2000 meters. Therefore, altitudes above 2000 meters have the most landslides. Also, due to the direct relationship between altitude and climatic fluctuations in these altitudes, the amount of precipitation is higher and, of course, has a great impact on the occurrence of landslides. In these areas, vegetation is at a minimum and due to the cold region, the vegetation in these areas is very small, which prepares the conditions for landslides and due to the presence of sedimentary formations such as sandstone, Siltstone mudstone with tuff interbreeds in the area, the conditions for landslides have become more prone and because these formations lose their stability sooner and are strongly influenced by physicochemical factors, they are more prone to landslides than other formations. To be. According to the results, the low risk floor with the highest value, 405.44 square kilometers, occupies approximately 30.87 percent of the area, but the very high risk floor with 288.2 square kilometers and the high risk class with 23.23 square kilometers. , Occupy a total of 37.25% of the area of risk classes.

Keywords

Main Subjects

- بابکان، سولماز؛ زارع، مهدی؛ معماریان، حسین. (۱۳۸5). پهنه بندی حساسیت زمین­لغزش، در ناحیه ساحلی دریای خزر، با روش احتمالی نسبت فراوانی با استفاده از GIS. دومین کنفرانس بین‌المللی مدیریت جامع بحران در حوادث غیرمترقبه طبیعی، تهران، شرکت کیفیت ترویج.
-خدائی قشلاق، فاطمه؛ حجازی، اسداله. (1395). پهنه بندی خطر وقوع زمین­لغزش در محدوده کلیبرچای با استفاده از روش تحلیل شبکهANP ، اولین کنفرانس بین‌المللی مخاطرات طبیعی و بحران‌های زیست‌محیطی ایران، راهکارها و چالش‌ها، اردبیل، شرکت کیان طرح دانش، مرکز تحقیقات منابع آب دانشگاه شهرکرد.
-رامشت، محمدحسین؛ سادات، سمیه. (۱۳۹۰). کاربرد ژئومورفولوژی در برنامه‌ریزی ملی،منطقه­ای، اقتصادی، توریسم.انتشارات دانشگاه اصفهان، 392 صفحه.
-رنجبر، محسن؛ معمار افتخاری، محمد. (1391). پهنه­بندی پدیده لغزش با استفاده از روش LNRF  در جاده هراز (از امامزاده‌ هاشم تا لاریجان)، جغرافیا؛ دوره10 ؛ شماره 33 ، 107- 128.
-روستایی، شهرام؛ خدائی، لیلا؛ مختاری، داوود؛ رضا طبع، خدیجه؛ خدائی، فاطمه. (1394). کاربرد تحلیل شبکه در بررسی پتانسیل وقوع زمین لغزش در محدوده محور و مخزن سد قلعه چای، مخاطرات محیط طبیعی، دوره4، شماره5، 74-59.
-زبردست، اسفندیار. (1398).  کاربرد فرآیند تحلیل شبکه­ای (ANP)  در برنامه­ریزی شهری و منطقه­ای، هنرهای زیبا- معماری و شهرسازی، دوره 2، شماره 41، 90-79.
-سوری، سلمان؛ لشکری­پور، غلامرضا؛ غفوری، محمد؛ فرهادی نژاد، طاهر. (1390). پهنه­بندی خطر زمین­لغزش با استفاده از شبکه عصبی مصنوعی (مطالعه­ موردی: حوضه کشوری(نوژیان))، مجله زمین­شناسی مهندسی دانشگاه تربیت معلم، دوره 5 ،شماره 2، 1269-1286.
-عبادی‌نژاد، سید علی؛ یمانی، مجتبی؛ مقصودی، مهران؛ شادفر، صمد. (1386). ارزیابی کارایی عملگرهای منطق فازی در تعیین توانمندی زمین‌لغزش (مطالعه موردی: حوزه آبخیز شیرود)، انجمن آبخیزداری ایران، سال اول، شماره 2، 39-44.
-عظیم­پور، علیرضا؛ صدوق حسن؛ دلال اوغلی، علی: ثروتی، محمدرضا. (1388). «ارزیابی نتایج مدل AHP در پهنه­بندی خطر زمین­لغزش، (مطالعه موردی­: حوضه آبخیز اهرچای)، مجله فضای جغرافیایی، دوره 9، شماره 26، 71-87..
-فتحی، محمدحسین؛ بهشتی جاوید، ابراهیم؛ عابدینی، موسی. (1394). .پهنه­بندی حساسیت وقوع زمین لغزش با مدل­های آماری دو متغیره و منطق فازی. جغرافیا و برنامه ریزی محیطی، دوره 26، شماره 3 :49-60.
-فرجی سبکبار، حسنعلی؛ سلمانی، محمد؛ فریدونی، فاطمه؛ کریم زاده، حسین؛ رحیمی، حسن. (1389). مکان‌یابی محل دفن بهداشتی زباله روستایی با استفاده از مدل فرآیند شبکه­ای تحلیل(ANP)، مطالعه موردی نواحی روستایی شهرستان قوچان، فصلنامه مدرس برنامه­ریزی و آمایش فضا(مدرس علوم انسانی) علوم انسانی، دوره 14، شماره 1، 127-149.
-مددی، عقیل. (1389). بررسی ناپایداری ژئومورفولوژیک گردنه صائین (بین شهر نیر و سراب، منطقه آذربایجان) با استفاده از روش آنبالاگان؛ مجله جغرافیا و برنامه‌ریزی محیطی، سال21، شماره1، 77-94.
- مقیمی، ابراهیم. یمانی، مجتبی. رحیمی هرآبادی، سعید. (1392). ارزیابی و پهنه­بندی خطر زمین لغزش در شهر رودبار با استفاده از فرایند تحلیل شبکه(ANP)، پژوهش­های ژئومورفولوژی کمی، سال اول- شماره 4، 103-118.
-مهندسین مشاور طرح راه و ابنیه (1384) گزارش بررسی عملکرد زمین‌شناسی محور اردبیل _سراب_صائین ( اداره کل راه و ترابری استان اردبیل).
-میرسنجری، میرمهرداد؛ ایلدرمی، علیرضا؛ عابدیان، سحر؛ علی­محمدی، عارفه. (1397). ‌پهنه بندی خطر ‌وقوع‌ زمین‌لغزش ‌با ‌استفاده ‌از‌‌ مدل LNRF (منطقه مورد مطالعه: حوضه آبریز قمرود- الیگودرز)، مخاطرات محیط طبیعی، دوره 7، شماره18، 109-130.
-Cruden MD, Varnes, DJ. 1996. Landslide types and processes 276: 36-75.
-Komac, M. 2006. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28.
-Neaupane K.M, Piantanakulchai M. (2006). Analytic network process model for landslide hazard zonation. Engineering Geology 85: 281–294.
-Paoletti, V., Tarallo, D., Matano, F., Rapolla A., (2013). susceptibility zoning on seismicinduced landslides: An application to Sannio and Irpinia areas, Southern Italy. Physics and Chemistry of the Earth Vol.63, PP.147–159.
-Piacentini D, Troiani, F., Soldati M, Notarnicola C, Savelli D., Schneiderbauer S, Strada C. 2012. Statistical analysis for assessing shallow_landslide susceptibility in South Tyrol (south eastern Alps, Italy). Geomorphology 151–152: 196–206.
-Van Westen C.J., )1995(. Geographic Information System in Landslide Hazard Zoning: A Review, with Example from the Andes of Colombia in: Price, M. and System, Taylor & Francis, Bsingstoke, U.K, pp. 135-165.
-Varnes, D. J., (1984). Landslide Hazard Zonation: A Review of Principle and Practice, UNEXCO, Paris. pp. 345-405.
-Wan, S. and Chang, S.H. (2014). Combined Particle swarm optimization and linear discriminantanalysis for landslide image classification: Application to a case study in Taiwan Environ, Earth Sci, 72: 1453-1464.
-Zhang, W, Wang., W., Xia., Q., (2012) Landslide Risk Zoning Based on contribution of rate stack Method, Energy procedia, vol. 16. pp 178 – 183.