Document Type : Research Paper

Authors

1 Assistant Professor of Shahid Beheshty,Tehran

2 Full professor.Faculty of Geography and Planning , Departmant of Physical Geography ,Tabriz University,Tabriz,Iran

3 Full Professor Department of Meteorological ,University of Tabriz

4 Associate Professor ,Department of Water Engineering ,Tabriz University,Tabriz,Iran

2

Abstract

Catchments and river systems altered in response to changes of internal and external factors. Hence, several techniques have been proposed to simulate these changes and Evolution of the river systems. Cellular Automaton is one of the newest river cellular models that define the catchment landscape with a grid of cells, and development of this landscape is determined by the interactions between cells (for example fluxes of water and sediment) using rules based on simplifications of the governing physics.This method is used for simulation of Lighvan catchment with 20 m cell size and 10 years precipitation data (1380 to 89). Simulation results evaluated in two qualitative and quantitative methods, So that the relative changes in the catchment and spatial distribution of erosion and aggradation value in the entire catchment and each cell was identified on Digital Elevation Model map and also, values of different particle size distribution ​​in different discharges showed that with the increasing discharge, and amounts of sediment increased and among this coarse sand have the highest value and very fine sand, clay and silt particles have the lowest value. Also investigation of longitudinal and latitude profile show that Lighvan river is in mature stage and Lighvan channel has been underwent aggradation due to climate changes and increasing catchment precipitation in last decade that causes hillslope erosion and channel aggradation. Finally, Since certainty of Cellular Automata results is difficult and CAESAR is sensitive to input parameters but comparing the results with previous investigation and field observation shows that Cellular Automata has acceptable results. 

Keywords

Main Subjects

- احمدی، حسن (1367)، «ژئومورفولوژی کاربردی»، چاپ اول، انتشارات دانشگاه تهران.
- بیاتی­خطیبی، مریم و معصومه رجبی (1385)، «تحیلی تحول ژئومورفولوژیکی نیمرخ طولی دره ها در نواحی کوهستانی مطالعه موردی: یازده دره اصلی توده کوهستانی سهند»، پژوهش­های جغرافیایی، شماره 57، ، صص 59-43.
- فزونی، سعید (۱۳۸۵)، «بررسی مقایسه­ای پروفیل سطح آب و پهنه سیل با مدل­های با بستر ثابت و بستر متحرک»، پایان­نامه کارشناسی ارشد، دانشکده عمران، دانشگاه تبریز.
- کرمی، فریبا؛ بیاتی­خطیبی، مریم و هاشم رستم­زاده (1385)، «پهنه­بندی خطر حرکات توده­ای مواد در حوضه آبریز لیقوان چای»، فصلنامه مدرس علوم انسانی، ویژه­نامه جغرافیا، دور دهم، پیاپی ۴۸، صص 145-125.
- Coulthard, T.J. (1999), “Modeling Upland Catchment Response to Holocene Environmental Change”, PhD Thesis, School of Geography, University of Leeds, U.K.
- Coulthard, T.J., Lewin, J., Macklin, M.G. (2005), “Modeling differential catchment response to environmental change”, Geomorphology,69, PP. 222-241.
- Coulthard, T.J., Macklin, M.G. and Kirkby, M.J. (2002), “A cellular model of Holocene upland river basin and alluvial fan evolution”, Earth Surface Processes and Landforms, 27, PP. 269-288.
- Coulthard, T.J., Macklin, M.G., (2001), “How sensitive river systems to climate and land use changes? A model-based evaluation”, Journal of Quaternary Science, 16 (4), PP. 347-351.
- Cox, C., Brasington, J. and Richards, K. (2005), “Predicting reach scale flow patterns using reduced complexity cellular schemes”, EGU General Assembly, 7, EGU05-A-01646.
- Gordon, E., Meentemeyer, R.K. (2006),“Effect of dam operation and land use on stream channel morphology and riparian vegetation”, Geomorphology, 82, PP. 412-429.
- Hancock, G.R, Coulthard, T.J., Willgoose, G.R. (2011), “Modelling erosion and channel movement-respose to rainfall variability in South East Australia”, 19th International Congress on Modelling and Simulation, Perth, Australia.
- Hancock, G.R, Lowry, JBC, Coulthard, T.J., Evans, KG, Moliere, DR, (2010), “A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models”, Eearth Surface, Process and Landforms, 35, PP. 863-875.
- Nicholas, A.P. (2005), “Cellular modelling in fluvial geomorphology”, Earth Surface Processes and Landforms, 30, pp. 645-649.
- River Basin Dynamics and Hydrology Research Group (RBDHRG), (2006), “Predictive and investigative modelling of flood hazard in Welsh river catchments”, Volume 1, University of Wales, Aberystwyth.
- Snyder, N.P,K.X, Whipple, G.E. Tucker, D.J, M., (2003), “Channel response to tectonic forcing field analysis of stream morphology and hydrology in the Mendocino triple junction region”, Northern California, Geomorphology, 53, PP. 97-127.
- Thomas. R, Nicholas, A.P., Quive, T.A. (2007), Cellular modelling as a tool for interpreting historic braided river evolution”, Geomorphology, 90, PP. 302-317.
- Van De Wiel, M.J., Coulthrd, T.J., Macklin, M.G, Lewin, J., (2007), “Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model”, Geomorphology, 90, PP. 283-301.
- Van, Tri P.D., Carling, Paul A., Coulthard, Tom J., Atkinson, Peter M. (2007), “Cellular Automata Approach for Flood Forecasting in a Bifurcation River System,  PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-7 (401), PP. 255-260.
- Ziliani, L., Surian, N., Coulthard, T.J., Tarantola, S., (2013), “Reduced-complexity modeling of braided rivers: Assessing model performance by sensitivity analysis,calibration, and validation”, Journal of Geophysical Research: Earth Surface, 118, PP. 1-20.