نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، فارغ التحصیل رشته آبخیزداری، دانشگاه محقق اردبیلی

2 دانشیار گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی (نویسنده مسئول)

3 استادیار گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه

4 دانشجوی دکتری

10.22034/gp.2020.11233

چکیده

برآورد رسوب‌دهی رودخانه به‌دلیل پیچیدگی‌های آن یکی از مواردی است که مورد توجه پژوهشگران قرار گرفته است. اﺳﺘﻔﺎده از ﻣﻨﺤﻨﯽﻫﺎی ﺳﻨﺠﻪرﺳﻮب و راﺑﻄﻪ ﺗﻮاﻧﯽ ﺑﺮازش داده ﺷﺪه ﺑﯿﻦ دادهﻫﺎی دﺑﯽ و ﻏﻠﻈﺖ رﺳﻮب ﻣﻌﻠّﻖ ﯾﮑﯽ از ﻣﺘﺪاولﺗﺮﯾﻦ روشﻫﺎی ﺗﻌﯿﯿﻦ ﻣﯿﺰان ﻏﻠﻈﺖ رﺳﻮب ﻣﻌﻠّﻖ اﺳﺖ. از طرفی پدیده تغییر اقلیم با تأثیر روی بارش، درجه‌حرارت و دبی جریان تولیدی، به‌صورت غیرمستقیم کیفیت آب را نیز تحت تأثیر قرارمی‌دهد. هدف پژوهش حاضر به‌‌دست آوردن تغییرات رسوب طی دهه آینده (2030-2011) با استفاده از معادله سنجه‌رسوب می‌باشد. برای این‌منظور از مدل هیدرولوژیکی IHACRES و مدل اقلیمی LARS-WG استفاده شد. مدل IHACRES ابتدا برای 7 ایستگاه هیدرومتری واسنجی و اعتبارسنجی شد سپس با به‌کارگیری مدل LARS-WG میزان تغییرات درجه حرارت حداقل، حداکثر و بارندگی برای دوره آینده به‌دست آمد. این تغییرات به مدل IHACRES اعمال شد و میزان دبی جریان دوره آتی تخمین زده شد. از طرفی با استفاده از داده‌‌های دبی و رسوب مشاهداتی منحنی‌سنجه‌رسوب تهیه شد. با تغییر مقادیر دبی جریان در ایستگاه‌های مطالعاتی مقادیر دبی رسوب معلق برای دوره آتی محاسبه شد. نتایج نشان داد مقدار بارندگی 68/3 درصد کاهش یافته و دمای حداقل 48/16 و دمای حداکثر نیز 39/5 درصد افزایش یافته است. بررسی میزان رواناب طی دهه آینده در ایستگاه‌های هیدرومتری نشان داد که دبی متوسط به‌طورکلی 16/0 درصد کاهش یافته است. تعداد وقایع دبی اوج افزایش یافته است که بیش‌ترین افزایش مربوط به ایستگاه هیدرومتری یامچی با دبی متوسط 09/2 و 16 واقعه دبی اوج بالای 6 مترمکعب برثانیه می‌باشد. این تغییرات اقلیمی به‌طور متوسط منجر به کاهش 74 درصدی بار معلق رسوب در ایستگاه‌های مطالعاتی شده است. نتایج پژوهش حاضر نشان دهنده تأثیر قابل توجه تغییر اقلیم بر حوزه‌های آبخیز استان اردبیل می‌باشد و با توجه به اثرات زیست محیطی تغییر اقلیم لازم است راهکارهایی جهت مدیریت مناسب حوزه‌های آبخیز اتخاذ شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessing the effects of climate change on Assessing the effects of climate change on suspended sediment values in some watersheds of Ardabil provincet values in some watersheds of Ardabil province

نویسندگان [English]

  • Nayer Aghabeigi 1
  • Abazar Esmali Ouri 2
  • Raoof Mostafazadeh 3
  • mohammad Golshan 4

1 Graduated of watershed management field / University of Mohaghegh Ardabili

2 Faculty member /University of Mohaghegh Ardabili

3 Professor (Assistant) Department of Natural Resources, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili

چکیده [English]

Introduction
Estimation of the rivers sediment load has high complexity due to effecting different parameters in this aspect. Regarding the power relationship between discharge data and suspended sediment load use of sediment rating curves is one of the most common methods for determining the sediment yield in ungauged watersheds. Sediment condition shows the upstream characters and using of the obtained data makes a relation between erosion and sediment load. The different parameters such as climate, land use, data accuracy and the applied methods have the effect on the sediment rating curve shape. Agriculture activities such as tillage in the direction of slope lead to accelerated erosion in the watersheds, especially in the Mediterranean area. These decades many studies assessing the effects of climate changes in the future period and it affects on runoff. In this study, the main objective is to obtain sediment changes during the future decade (2011-2030) using the curve rating in sediment estimating. For this purpose, the IHACRES hydrologic model and the LARS_WG climate model were used.
Material and Methode
The IHACRES model for seven hydrometric stations was calibrated and validated. This model is a rainfall and runoff erosion that require a little data for running including minimum and maximum temperature, rainfall, discharge and study are. This model defined as a lumped model and highly common in watersheds with scarce data. With running this model in all of the models the model parameters were calibrated. Also, the LARS_WG model was used for determining the weather changes that are occurring in the Samian watershed. This watershed has near to 4 thousand square kilometers that have many sub-watersheds. In this study, the watersheds in the west of the Samian watershed were selected for modeling. The average of rainfall in this area is between 220 and 457 mm, and the weather temperature changes in this region are high and that is between -32 to 34 C°. The results of LARS_WG showed the weather changes in each part of the hydrological model inputs that these changes were applied to the IHACRES model and the discharge flow rate was estimated for the future. On the other hand, using the observed discharge and sediment yield were calculated the sediment curve rate. By changes in flow discharge at the study stations, were calculated the suspended sediment discharges for the future period.
results and discussion
The results of the LARS_WG model showed that the amount of precipitation decreased to 3.68 percent and the minimum and the maximum temperature increased by 16.48 and 5.39 percent, respectively. Decreasing of the input precipitation in most part of the world particularly in Iran watersheds mentioned in many studies. One of the other the most important effect of the climate change in this area is minimum and maximum temperature increase that leads to evapotranspiration increasing and soil moisture loss. The results of the IHACRES model showed that this model has the suitable capability for simulation runoff in the study area, therefore, it was used for estimating the future runoff regarding climate changes. The model output showed that during the next decades the average flow rate in the hydrometric stations will decrease by a total of 16 percent and the number of peak flood events will increase, that the highest increase between the study watersheds observed in the Yamchi hydrometric station with a mean of 2.09 m3s-1 and 16 peak events with over 6 m3s-1. Using the obtained results of the climatic model, hydrological model and the sediment rating curve the suspend sediment changes were estimated for the future period. The result shows that these climatic changes will lead to a 47 percent reduction in the average of suspended sediment load at study stations.
Conclusion
The consequences of the climate changes have the significant effect on water resources quality and quantity. The aims of this study were calculating the weather changes and it's ruling on discharge and sediment yield changed. the results of this study indicate the effect of climate change on the Ardabil province watersheds is remarkable. Considering the environmental impacts of climate change and dependence on human life on the environment it is necessary to implement an appropriate approach for decent management in Watersheds.

کلیدواژه‌ها [English]

  • Sediment rating curve
  • suspend sediment
  • climate change
  • LARS-WG
  • discharge changes
  • IHACRES
-آقابیگی، 1396، ارزیابی تغییرپذیری رواناب و رسوب ناشی از تغییرات اقلیمی در حوزه‌های آبخیز استان اردبیل، پایان‌نامه کارشناسی ارشد رشته آبخیزداری، دانشگاه محقق اردبیلی
-تلوری، ع؛ بیرودیان، ن؛ منوچهری، ا، 1386، مدل‌سازی تغییرات زمانی رسوب، پژوهش و سازندگی در منابع طبیعی، شماره 75، صفحه 70-64.
-حکیم‌خانی، ش؛ عرب خدری، م؛ مهدوی، م؛ ولی خوجینی، ع،  1379، تحلیل منطقه‌ای رسوب معلق در حوزه دریاچه ارومیه، دومین همایش فرسایش و رسوب، خرم‌آباد، لرستان.
-حلبیان، ا؛ حیدری، م، 1395، برآورد رسوب با استفاده از منحنی ‌سنجه‌رسوب و بررسی تغییرات دبی برآن، جغرافیا، دوره 14، شماره 51، صفحه 218-193.
-خروشی، س؛ مصطفی‌زاده، ر؛ اسمعلی‌عوری، ا؛ رئوف، م، 1396، ارزیابی تغییرات زمانی و مکانی شاخص سلامت هیدرولوژیک رودخانه در حوزه‌های آبخیز استان اردبیل، اکوهیدرولوژی، دوره4، شماره 2، صفحه 393-379.
-رضایی‌زمان، م؛ مرید، س، دلاور، م، 1392، اثرات تغییر اقلیم بر متغیرهای هیدروکلیماتولوژی حوزه سیمینه‌رود. نشریه آب و خاک، سال 6، شماره  27، صفحه 1259-1247.
-سیدقاسمی، س؛ ابریشم چی،ا، تجریشی، م، 1385، اثرات تغییرات جریان رودخانه زاینده -رود بر اثر تغییر اقلیم، دومین کنفرانس مدیریت منابع آب.
-صالحی، ب؛ عالی‌جهان، م؛ عینی، س؛ درخشی، ج، 1396، پیش‌بینی تاریخ‌های شروع و پایان یخبندان‌های سبک و سنگین استان کرمانشاه با بهره‌گیری از ریزگردان LARS-WG. جغرافیا و برنامه‌ریزی تبریز، سال 21، شماره 59، صفحه 195-175.
-صیاحی، ث؛ ع. شهبازی ، خ. خادمی، 1396، پیش‌بینی اثر تغییر اقلیم بر رواناب ماهانه حوزه دز با مدل IHACRES، فصلنامه علوم و مهندسی آب، سال 7، شماره 15، صفحه 18-7.
-قاسمی، ا؛ فتاحی، ا؛ بابایی، ا، 1392، تاثیر تغییر اقلیم بر رواناب با رویکرد عدم قطعیت مدل گردش عمومی جو، مطالعات جغرافیایی مناطق خشک، سال 4، شماره 13، صفحه 53-37.
-کاویان، ع؛ نامدار، م؛ گلشن، م؛ بحری، ر، 1396، مدل‌سازی هیدرولوژیکی اثرات تغییر اقلیمی بر نوسانات دبی رودخانه هراز، مخاطرات محیط طبیعی، سال 6، شماره 12، صفحه 104-89.
-کریمی، م؛ قاسمی، ا، 1396، بررسی پدیده تغییر اقلیم با رویکرد تصمیم‌گیری چندمعیاره، جغرافیا و برنامه‌ریزی تبریز، سال 21، شماره 61، صفحه 261-241.
-گلشن، م؛ اسمعلی، ا؛ شاهدی، ک؛ جهانشاهی، ا، 1395، کارایی مدل SWAT و IHACRES  در شبیه‌سازی رواناب حوزه آبخیز خرم‌آباد. دانش آب و خاک، شماره 26، صفحه 42-29.
-گودرزی، م؛ صلاحی، ب؛ حسینی، ا، 1394، بررسی تأثیر تغییرات اقلیمی بر تغییرات رواناب سطحی، اکوهیدرولوژی، دوره2، شماره2، صفحه 189-175.
-لکزائیان پور، غ؛ محمدرضاپور، ا. مالمیر، م، 1395، ارزیابی آثار تغییر اقلیم بر میزان رواناب رودخانه نازلو چای در حوزه دریاچه ارومیه، جغرافیا و توسعه، شماره 42، صفحه 198- 183.
-مختاری، ا، 1376، بررسی مدل امکان برازش مدل تجربی PSIAC در برآورد فرسایش رسوب در حوزه‌های آبخیز فاقد آمار با بهره‌گیری از ‌GIS و سنجش از دور، پایان‌نامه کارشناسی ارشد آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه تهران.
-نامدار، م، 1393، پیش‌بینی رواناب سطحی بر پایه تغییرات اقلیمی حوزه آبخیز هراز، پایان‌نامه‌ کارشناسی ارشد آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
-همتی، م؛ مهدوی، م؛ عرب خدری، م، 1380، بررسی رابطه رسوب‌دهی حوزه‌های آبخیز با لیتووژی و عوامل بارش موثر، همایش ملی مدیریت اراضی، فرسایش خاک و توسعه پایدار، اراک، مرکز تحقیقات حفاظت خاک و آبخیزداری، صفحه 244-234.
-Bavay M., Grünewald T., and Lehning M. 2013. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Advances in Water Resources, 55: 4-16.
-Bobrovistkaya, N., Kokorev, A., and Lemeshko, N. 2003. Regional Patterns in Recent Trends in Sediment Yields of  Eurasian and Siberian Rivers, Global and Planetary Change, 39: 127-146.
-Dawoochund, R., Patra, K. C., and Swain, J. B. 2017. Adequacy of IHACRES Model on Streamflow Resulting from Landuse Changes. 22nd International Conference on Hydraulics,Water Resources and Coastal Engineering, Gujarat,India, 21-23 December, 2355-2363.
- Girolamo, A. M., Pappagallo, G., and Porto, A. L. 2015. Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena, 128, 135-143.
-Gomez, J.A., Sobrinho, T.A., Giraldez, J.V., and Fereres, E. 2009. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Reserch. 102, 5–13.
-Gupta, H., and  Chakrapani, G.J. 2007. Temporal and spatial variations in water flow and sediment load. Current Science. 92 ( 5): 679-684.
-Hicks, D. M., Gomez, B., and Trustrum, N. A. 2000. Erosion Thresholds and Suspended Sediment Yields, Waipaoa River Basin, New Zealand, Water Resour. Resercher. 36(4): 1129-1142.
-Horowitz A.J., 2003. An Evaluation of Sediment Rating Curves for Estimating Suspended Sediment Concentrations for Subsequent Flux Calculations, Hydrological Processes, 17. 3387–3409.
-Kao, Sh., Lee, T  and Milliman, J.D. 2005. Calculating highly fluctuated suspended sediment fluxes from mountainous rivers, Taiwan. 16: 653-675.
-Ladegard, P., Sigsgaard, C., Kroon, A., Abermann, J., Skov, K., Elberling, B. 2017. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods. Science of the Total Environment, 580, 582-592.
-Ladegaard-Pedersen, P., Sigsgaard, C., Kroon, A., Abermann, J., Skov, K., and Elberling, B. 2017. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods. Total Environment, 580, 582-592.
-Li, L.J., Zhang, L., Wang, H., Wang, J., Yang, J.W. and Jiang, D.J.2007.  Assessing the impact of climate variability and human activities on streamflow from the Wuding River. Hydrol Process.21(25): 3485-3491.
-Littlewood, L.G., Clarke, R.T., Collischonn, W., Croke, B.F.W. 2007. Predicting daily Streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling and Software, 22: 1229-1239.
-Nikolaidis, N.P., Demetropoulou, L., Froebrich, J., Jacobs, C., Gallart, F. 2013. Towards a sustainable management of Mediterranean river basins. Policy recommendations on management aspects of temporary river basins. Water Policy 15, 830–849.
-Sriwongsitanon, N., and Taesombat, W. 2011. Estimation of the IHACRES model parameters for Flood Estimation of Ungauged catchments in the upper ping river basin. Journal Kastsart (Natural Science) 45: 917-931.
-Stanley, D.J., Warne, A.G. 1998. Nile delta in its destruction phase. Journal of Coastal Research 14, 794–825.
-Tan M., Ibrahim A., Yusop Z., Duan Z., Ling L. 2015. Impacts of landuse and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrological Sciences, 60:1-17.
-Walling, D. E., 1977, assessing the accuracy of suspended sediment Rating curves for a small Basin, water Resources Research. 13 (3).
-Walling, D.E., Fang, D., 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39: 111–126.
-Wang, H., Yang, Z., Saito, Y., Liu, J. P., Sun, X. and Wang, Y. 2007. Stepwise decreases of the Huanghe sediment load: Impacts of climate change and human activities. Global and Planetary Change, 57: 331-354.
-Yang, Z., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S., Shi, G. 2006. Dam impacts on the Changjiang River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research 42, W04407: 1:10.