نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجو دکترا آب و هواشناسی، دانشگاه زنجان، زنجان، ایران

2 استادیار اقلیم شناسی، گروه جغرافیا، دانشگاه زنجان، زنجان، ایران

3 استاد اقلیم شناسی، گروه جغرافیا، دانشگاه زنجان، زنجان، ایران

10.22034/gp.2022.47673.2886

چکیده

در این مطالعه، جهت تحلیل نقشه همبستگی و رگرسیون گردش هدلی با جت نیمه گرمسیری، فشار سطح زمین، تابش موج بلند خروجی زمین، رطوبت نسبی تراز 850 هکتوپاسکال، بارش و داده‌های ناهنجاری‌های وزنی بارش استاندارد شده استفاده شده است. نتایج مطالعه نشان داد رابطه سلول هدلی و جت نیمه‌گرمسیری بر نیوار ایران در تـراز 200 هکتوپاسکال همبسـتگی مثبـتی با مقدار 4/0 - 7/ 0 تا 35 درجه عرض جغرافیایی را دارد و همچنین تحلیل رگرسیون نشان داد که در عرض‌های جغرافیایی بین 15 تا 35 درجه شمالی جت نیمه‌گرمسیری (m/s) 1 بیشتر از حالت نرمال است، البته در سال 2017 تا عرض‌های جغرافیایی 30 درجه شمالی 2 متر در ثانیه افزایش را نشان داد که بر میزان بارش اثر منفی داشته است. رابطه سلول هدلی با تابش موج بلند خروجی زمین در مناطق جنوبی، جنوب‌غربی و جنوب‌شرقی ایران با مقدار 4/0 و ارتفاعات زاگرس و شمال‌غرب ایران با مقدار 7/0 و رگرسیون با مقدار (w/m2) 01/0 بیشتر از حالت نرمال نشان داد که به عنوان یک منبع گرمای محسوس در وردسپهر میانی عمل نموده و گرما مستقیماً به وردسپهر میانی اضافه شده و موجب گرمایش نیمه فوقانی وردسپهر شده است که رابطه سلول هدلی و رطوبت نسبی تراز 850 هکتوپاسکال در اکثر مناطق ایران به میزان 4/0 و مقدار رگرسیون 2 تا 1 را نشان داده است. رطوبت نسبی پایین همراه با توده خشک شده هوا در زیر مناطق شاخه نزولی سلول هدلی قرار دارد که شرایط خشکی را حاکم کرده است که شاخص ناهنجاریهای بارش در عرض‌های پایین تر از 35 درجه در مناطق جنوبی، جنوب غرب و جنوب شرقی ایران همبستگی منفی (7/0-) را نشان داد که شرایط عدم بارش و خشکسالی را ایجاد می کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Correlation and Regression Hadley Circulation and Atmospheric Components with Atmosphere Droughts in IRAN

نویسندگان [English]

  • Seyyed mahmoud Hosseini seddigh 1
  • masoud jalali 2
  • Hossein Asakereh 3

1 Doctoral student of hydrology and meteorology, Zanjan University, Zanjan, Iran

2 Assistant Professor of Climatology, Department of Geography, Zanjan University, Zanjan, Iran

3 Professor of Climatology, Department of Geography, Zanjan University, Zanjan, Iran

چکیده [English]

Introduction
The results of the study showed that the correlation headley cell and subtropical jet on the atmosphere Iran at the level 200 hPa has a positive correlation with a value of 0.4-0.7 to 35 ° latitude and also regression analysis showed that in latitudes between 15 35 degrees north of the subtropical jet 1(m/s) is higher than normal, although in 2017 up to latitudes 30 degrees north showed an increase of 2(m/s), which had a negative effect on rainfall.
Data and Method
The relationship between Hadley cell and olr in the southern, southwestern and southeastern regions of Iran with a value of 0.4 and the Zagros and northwestern heights of Iran with a value of 0.7 and regression with a value of (w/m2) 0.01 more than normal.
Results and Discussion
It acts as a tangible source of heat in the middle Wordspehr and the heat is added directly to the middle Wordspehr and causes heating of the upper half of the Wordspehr.
Conclusion
Regression 2 to 1 is shown. Low relative humidity along with the dried air mass is located below the descending branches of the headley cell, which has ruled the drought conditions (-0/7) showed that it creates conditions for lack of rainfall and drought.

کلیدواژه‌ها [English]

  • Hadley Cell"
  • Temporal correlation and regression"
  • Atmospheric components"
  • "
  • Drought"
  • جلالی، مسعود؛ حسینی صدیق، سید محمود (1398)، گسترش قطب سو چرخش سلول هادلی در نیمکره شمالی، هواشناسی و علوم جو، جلد 2، شماره 2، تابستان، صص 129-142.
  • حسینی صدیق، سید محمود؛ جلالی، مسعود (1400)، بررسی ساختار دینامیکی گردش نصف النهاری سلول هادلی در کمربند حاره، نیوار، دوره 45، شماره 113-112، بهار و تابستان، صص 1-15.
  • عالمزاده، شاهین. احمدی گیوی، فرهنگ. محب الحجه، علیرضا. یازجی، دانیال (1396). ساختار هندسی جت آفریقا-آسیا در وردسپهر زبرین و پاسخ آن به گرمایش زمین در مدل های CMIP5. مجله ژئوفیزیک ایران، جلد11، شماره 3، صفحه 1 تا 26.
  • قانقرمه، عبدالعظیم (1399). ارزیابی تغییر موقعیت رودباد جنب حاره ای مستقر بر روی ایران و آینده نگری آن بر اساس دو مدل اقلیمی  CanESM2 و GFDL-CM3T، جغرافیا و مخاطرات محیطی.
  • گرمسیری مهوار، علی اکبر؛ عزیزی، قاسم، محمدی، حسین؛ کریمی احمدآباد، مصطفی (1400)، گردش کلی جو در اطلس و آرام شمالی و ارتباط آن با توسعه و توقویت واچرخندهای جنب حاره آزورز و هاوایی، فیزیک زمین و فضا، دوره 47، شماره 3، پاییز.
  • گرمسیری مهوار، علی اکبر؛ عزیزی، قاسم، محمدی، حسین؛ کریمی احمدآباد، مصطفی (1399)، تحلیلی بر واچرخندهای جنب حاره در ترازهای میانی جو از شما آفریقا تا ایران، نشریه هواشناسی و علو جو، جلد 3، شماره 2، تابستان، صص 129-147.
  • Bin Wang, Michela Biasutti, Michael P. Byrne, Christopher Castro, Chih-Pei Chang, Kerry Cook, Rong Fu, Alice M. Grimm, Kyung-Ja Ha, Harry Hendon, Akio Kitoh, R. Krishnan, June-Yi Lee, Jianping Li, Jian Liu, Aurel Moise, Salvatore Pascale, M. K. Roxy, Anji Seth, Chung-Hsiung Sui, Andrew Turner, Song Yang, Kyung-Sook Yun, Lixia Zhang, and Tianjun Zhou (2021). Monsoons Climate Change Assessment. American Meteorological society. https://doi.org/DOI:10.1175/BAMS-D-19-0335.1.
  • Broccoli, A. J., Dahl, K. A. and Stouffer, R. J., (2006), Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33(1).
  • Chen JY, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841. doi:10.1126/science.1065835.
  • Cook, Celia, Chris J.C. Reason, and Bruce C. Hewitson.(2004). "Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region." Climate Research, 26: 17–31.
  • Cook, K.H., (2004). Hadley Circulation Dynamics: Seasonality and the Role of Continents. In “The Hadley Circulation: Past, Present, and Future”. Series: Advances in Global Change Research, Vol.21. Diaz, Henry F.; Bradley, Raymond S. (Eds.), 511 p., SBN: 1-4020-2943-8.
  • CSIRO (Commonwealth Scientific and Industrial Research Organization) (2012) Climate and water availability in South-Eastern Australia: a synthesis of findings from phase 2 of the South Eastern Australian climate initiative (SEACI). 41.
  • D’Agostino, R., J. Bader, S. Bordoni, D. Ferreira, and J. Jungclaus, (2020). Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Res. Lett., 46, 1591–1601, https://doi.org/10.1029/2018GL081589.
  • Dai, A (2013). Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 52–58, doi: 10.1038/ nclimate1633.
  • Feng, S., and Q. Fu, (2013). Expansion of global drylands under a warmer climate. Chem. Phys., 13, 10081–10094, doi: 10.5194/acp-13-10081-2013.
  • Gillet, N. P., Zwiers, F. W., Weaver, A. J. And Stott, P.A., 2003. Detection of Human Influence on Sea-Level Pressure, Nature, Vol. 40, No. 422, PP. 292-294.
  • Hartmann, D. L., (1994). Global Physical Climatology, Academic Press.
  • Hartmann, D. L., (2016). Chapter 6 - atmospheric general circulation and climate, in Global Physical Climatology (Second Edition), second edition ed., pp. 159 – 193, Elsevier, Boston.
  • Hou, A. Y. and Lindzen, R. S., (1992), The influence of concentrated heating on the Hadley circulation. Journal of the atmospheric sciences, 49(14), 1233-1241. http://iridl.ldeo.columbia.edu/.
  • Hu YY, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979.Atmos Chem Physics 7:5229–5236. doi:10.5194/acp-7-5229-2007.
  • IOCI (2012). Western Australia’s weather and climate: A synthesis of Indian Ocean Climate Initiative (IOCI) stage 3 research. CSIRO and BoM, 119 pp.
  • Kutile, H., Maheras, P., and Guika, S. (1998). Singularity of Atmospheric Pressure in the Eastern Mediterranean and its Relevance to Internal Variations of Dry and Wet Spells. Int. J. Climatol, 18(3): 317-327.
  • Levine, X. J. and Schneider, T., (2011), Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. Journal of the Atmospheric Sciences, 68(4), 769-783.
  • Lindzen, R. S. and Hou, A. V., (1988), Hadley circulations for zonally averaged heating centered off the equator. Journal of the Atmospheric Sciences, 45(17), 2416-2427
  • Lu, J., Chen, G. and Frierson, D. M., (2008), Response of the zonal mean atmospheric circulation to El Niño versus global warming. Journal of Climate, 21(22), 5835-5851.
  • Ma, S., and Coauthors, (2021). Detectable anthropogenic shift toward heavy precipitation over eastern China. Climate, 30, 1381–1396, https://doi.org/10.1175/JCLI-D-16-0311.1.
  • Menzel, M. E., Waugh, D., & Grise, K. (2019). Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophysical Research Letters, 46, 7045–7053. https://doi.org/10.1029/ 2019GL083345.
  • Mitas CM, Clement A (2005). has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32(3):L03809. Doi: 10.1029/2004GL021765.
  • Morales MS, Christie DA, Villalba R et al (2012). Precipitation changes in the South American Altiplano since 1300AD reconstructed by tree-rings. Clim Past 8:653–666. Doi: 10.5194/ cp-8-653-2012.
  • Nguyen, H., C. Lucas, A. Evans, B. Timbal, and L. Hanson (2015). Expansion of the Southern Hemisphere Hadley Cell in REsponse to Greenhouse Gas Forcing. J. Climate, 28, 8067–8077, doi:0.1175/JCLI-D-15-0139.1.
  • Numaguti, A.,(1995), Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones. Part II: Sensitivity to meridional SST distribution. Journal of the atmospheric sciences, 52(8), 1128-1141.
  • Oort, A. H. and Yienger, J. J.,(1996) bserved interannual variability in the Hadley circulation and its connection to ENSO. Journal of Climate, 9(11), 2751-2767.
  • Ru-Ping HUANG, Shang-Feng CHEN, Wen CHEN & Peng HU (2018). Has the regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades?, Atmospheric and Oceanic Science Letters, 11:6, 454-463, DOI: 10.1080/16742834.2018.1507412
  • Scheff, J., and D. M. W. Frierson (2012). Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi: 10.1029/2012GL052910.
  • Su, H., Jiang, J. H., Zhai, C., Shen, T. J., Neelin, J. D., Stephens, G. L., & Yung, Y. L. (2014). Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. Journal of Geophysical Research: Atmospheres, 119, 5787–5805. https://doi.org/10.1002/2014JD021642.
  • Trenberth, K., and D. Stepaniak, (2003). Seamless poleward atmospheric energy transports and implications for the Hadley circulation, J. Climate, 16(22), 3706–3722, doi:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.
  • Wang, B; Jin, C; Liu, J (2020), Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate.volume 3. p:6471-6488. DOI: 10.1175/JCLI-D-19-0993.1.
  • Waugh, D. W., Coauthors. (2018). Revisiting the relationship among metrics of tropical expansion. J. Climate, https://doi.org/ 10.1175/JCLI-D-18-0108, in press.
  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang SK, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002). Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–843. Doi: 10.1126/ science.1065837.
  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang SK, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–843. doi:10.1126/ science.1065837.
  • Xian, T.; Xia, J.; Wei, W.; Zhang, Z.; Wang, R.; Wang, L.-P.; Ma, Y.-F. (1699). Is Hadley Cell Expanding? Atmosphere 2021, 12. https://doi.org/10.3390/ atmos12121699.
  • Xian, T.; Xia, J.; Wei, W.; Zhang, Z.; Wang, R.; Wang, L.-P.; Ma, Y.-F. Is Hadley Cell Expanding? Atmosphere (2021). 12, https://doi.org/10.3390/ atmos12121699.