نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری رشته سنجش از دور و سیستم اطلاعات جغرافیایی،دانشکده جغرافیا، دانشگاه تهران

2 هیات علمی گروه سنجش از دور و GIS - دانشکده جغرافیا - دانشگاه تهران

3 گروه سنجش از دور و GIS - دانشکده جغرافیا - دانشگاه تهران

چکیده

امروزه جستجو و انتخاب در حجم بالایی از اطلاعات مکانی و غیرمکانی، فرآیند تصمیم‌گیری را کاری زمانبر و هزینه‌برکرده‌است. در این شرایط ‌سامانه‌های ‌‌توصیه‌گر به کار ‌می‌آیند تا مناسب‌ترین و بهترین گزینه‌‌ در ‌میان حجم عظیمی‌ از داده‌‌های موجود درکمترین زمان ارائه دهند درحالیکه که بیشترین و بالاترین ‌‌‌میزان شباهت با نیاز و علاقه کاربران داشته باشند. در حال حاضر مراکز واکسیناسیون کووید19 متعددی در سراسر شهر تهران وجود دارد که هر کدام با خدمات ارائه‌شده‌ی متنوع و منحصر به‌فرد خود در حال فعالیت هستند. هدف از این پژوهش طراحی و پیاده‌سازی یک سامانه توصیه‌گر جهت پیشنهاد بهترین مرکز واکسیناسیون کووید19 در منطقه 6 شهرداری تهران در سال 1400 می‌باشد. در سامانه توصیه‌گر پیشنهادی، ابتدا مراکز ارائه‌دهنده خدمات واکسیناسیون براساس ویژگی‌های مکانی با استفاده از الگوریتم خوشه‌بندی نگاشت خودسازمان‌ده به خوشه‌هایی با ویژگی‌های یکسان تقسیم‌بندی می‌شوند و در گام دوم با استفاده از منطق فازی نوع دوم، ترجیحات کاربران استنتاج و عدم قطعیت در آن مدل‌سازی می‌شود. در نهایت با استفاده از ترکیب خروجی‌های بدست‌آمده از دو مرحله طراحی شده، مرکز واکسیناسیون مناسب با نیاز کاربر جهت توصیه‌گری شخصی‌سازی شده استخراج می‌گردد. نتایج با استفاده از سه پارامتر ارزیابی دقت، فراخوانی و امتیاز F1 مورد بررسی قرار گرفت که به ترتیب مقادیر 0.70 و0.84 و 0.76 بدست آمد. این نتایج نشان داد استفاده از سیستم استنتاج فازی نوع دوم روش مناسبی برای مدلسازی یک سامانه توصیه‌گر شخصی‌سازی شده می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Development a Spatial Recommender System for Covid 19 Vaccination Center Based on Fuzzy Method Type II (Study Area: District 6 of Tehran)

نویسندگان [English]

  • Anahita Omidi 1
  • Meysam Argany 2
  • Sahar Daraee 3

1 PhD Student, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran

2 Department of Remote Sensing and GIS - Faculty of Geography - University of Tehran

3 Department of Remote Sensing and GIS - Faculty of Geography - University of Tehran

چکیده [English]

Covid 19, also known as coronavirus, is an infectious disease caused by the SARS-CoV-2 virus. Anyone can get Covid 19 at any age and become seriously ill or even die. In the meantime, vaccines have saved millions of lives. Covid vaccines are effective for most people 18 years of age and older with autoimmune disorders or underlying diseases. The recommender systems are an intelligent complement to the retrieval of information and refining concepts by analyzing user behaviors and one of the main tools in overcoming the problem of information redundancy. Therefore, in the process of vaccination centers recommending, uncertainty in preferences can be modeled and personalized recommendations can be performed. Therefore, by using the information of users' preferences and properties of vaccination centers based on knowledge-based recommender systems, appropriate arguments can be made about which centers are suitable for users.

کلیدواژه‌ها [English]

  • Covid-19 Vaccination Center
  • Recommender system
  • Fuzzy logic type II
  • User preferences
  • SOM clustring
  • آمار جهانی ویروس کرونا(2022). آخرین آمار مروبط به بیماری کووید19 در جهان. https://www.worldometers.info/coronavirus
  • ایروانی هوشنگ؛ خواجه نوری عباسقلی. (1370). یک روش آماری برای تبدیل پاسخ‌های کیفی به مقادیر کمی با حداکثر درست‌نمائی. مجله علوم کشاورزی ایران، جلد 22 شماره‌های 3 و 4.
  • داداش‌پور هاشم؛ خدابخش حمیدرضا. (1392). مکانیابی سایت‌های اسکان موقت با استفاده از فرآیند تحلیل سلسله‌مراتبی فازی(FAHP) مطالعه موردی منطقه 16 تهران. فصلنامه جغرافیا و برنامه ریزی46. صص67-90.
  • مدادی هریس صمد؛ پورمحمدی محمدرضا؛ صدر موسوی میرستار؛ روستایی شهریور. (1400). تحلیلی بر اولویت بندی شاخص های موثر بر توسعه محیط مسکونی پایدار با کاربرد فرایند تحلیل سلسله مراتبی فازی و مدل آنتروپی (مطالعه موردی : شهر تبریز). فصلنامه جغرافیا و برنامه ریزی. صص245-260
  • مددی عقیل؛ آزادی مبارکی محمد؛ بابائی اقدم فریدون.(1392). مدل سازی مکان های مناسب دفن زباله با استفاده از روش های AHP، منطق فازی، شاخص همپوشانی وزنی و منطق بولین (مطالعه موردی شهراردبیل) فصلنامهجغرافیا و برنامه ریزی صص 235-254
  • مرادی فراهانی حسین؛ عسگری جواد؛ ذکری مریم. (1392). مروری بر منطق فازی نوع-2: از پیدایش تا کاربرد.  نشریه محاسبات نرم، صص43-22.
  • معاونت آمار مرکز مدیریت آمار و فناوری اطلاعات وزارت بهداشت (آذر 1400). آخرین آمار از میزان تزریق واکسن کرونا. https://behdasht.gov.ir /231938
  • Alemdar, K. D., Kaya, Ö., Çodur, M. Y., Campisi, T., & Tesoriere, G. (2021). Accessibility of Vaccination Centers in COVID-19 Outbreak Control: A GIS-Based Multi-Criteria Decision Making Approach. ISPRS International Journal of Geo-Information, 10(10), 708.
  • Bhargava, H. K., Sridhar, S., & Herrick, C. (1999). Beyond spreadsheets: tools for building decision support systems. Computer, 32(3), 31-39.
  • Del Olmo, F. H., & Gaudioso, E. (2008). Evaluation of recommender systems: A new approach. Expert Systems with Applications, 35(3), 790-804.
  • Ghaleb FA, Saeed F, Alkhammash EH, Alghamdi NS, Al-rimy BAS. A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network. Sensors. 2022; 22(7):2810.
  • Greaves, F., Laverty, A. A., Cano, D. R., Moilanen, K., Pulman, S., Darzi, A., & Millett, C. (2014). Tweets about hospital quality: a mixed methods study. BMJ quality & safety, 23(10), 838-846.
  • Hagras, H.A., 2004. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy systems, 12(4), pp.524-539.
  • Holmbom, A. H., Eklund, T., & Back, B. (2011). Customer portfolio analysis using the SOM. International Journal of Business Information Systems, 8(4), 396-412.
  • Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction. Cambridge University Press.
  • Kayacan, E., 2011. Interval type-2 fuzzy logic systems: Theory and design. Bogazici University: PHD thesis.
  • Krzysztofowicz, S.; Osińska-Skotak, K. The Use of GIS Technology to Optimize COVID-19 Vaccine Distribution: A Case Study of the City of Warsaw, Poland. J. Environ. Res. Public Health 2021, 18, 5636.
  • Kim, J., Lee, D., & Chung, K. Y. (2014). Item recommendation based on context-aware model for personalized u-healthcare service. Multimedia Tools and Applications, 71(2), 855-872.
  • Kubat, M. (1999). Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review, 13(4), 409-412.
  • Liao, J., Liu, T., Liu, M., Wang, J., Wang, Y., & Sun, H. (2018). Multi-context integrated deep neural network model for next location prediction. IEEE Access, 6, 21980-21990.
  • Liao, S. H. (2005). Expert system methodologies and applications—a decade review from 1995 to 2004. Expert systems with applications, 28(1), 93-103.
  • Magano, T & Djouani, Karim & Kurien, Anish & Chibani, Abdelghani. (2018). A Fuzzy based Diagnostic Agent for Context Aware Patient Monitoring. Procedia Computer Science. 141. 421-427. 10.1016/j.procs.2018.10.174.
  • Mendel, J. M. (2007). Type-2 fuzzy sets and systems: an overview. IEEE computational intelligence magazine, 2(1), 20-29.
  • Mohammadi, A., Mollalo, A., Bergquist, R. et al. Measuring COVID-19 vaccination coverage: an enhanced age-adjusted two-step floating catchment area model. Infect Dis Poverty 10, 118 (2021).
  • Rajaraajeswari, S., Selvarani, R., Raj, P., & Mohanavadivu, P. (2017). Fuzzy logic for decision-enablement: a novel context-awareness framework for smarter environments. International Journal of High-Performance Computing and Networking, 10(1-2), 64-77.
  • Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
  • Roy, A., & Kar, B. (2022). A multicriteria decision analysis framework to measure equitable healthcare access during COVID-19. Journal of transport & health, 101331.
  • Sahraian, M. A., Ghadiri, F., Azimi, A., & Moghadasi, A. N. (2021). Adverse events reported by Iranian patients with multiple sclerosis after the first dose of Sinopharm BBIBP-CorV. Vaccine, 39(43), 6347-6350.
  • Sayeb, Y., Jebri, M., & Ghezala, H. B. (2022). A graph based recommender system for managing Covid-19 Crisis. Procedia Computer Science, 196, 348-355.
  • Swarnalatha, S., Kesavarthini, I., Poornima, S., & Sripriya, N. (2019, February). Med-Recommender System for Predictive Analysis of Hospitals and Doctors. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1-5). IEEE.
  • Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on neural networks, 11(3), 586-600.
  • World Health Organization (2017). Coronavirus disease. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes.