آب و هواشناسی
علی محمد خورشیددوست؛ کاوه محمدپور؛ سید اسعد حسینی
چکیده
یشبینی تعداد افراد مراجعهکننده به بیمارستانها در ارتباط با پارامترهای اقلیمی از موضوعات قابل بحت و تأمل است که با تغییرات اقلیمی و گسترش شهرنشینی و آلودگی هوا در دهههای اخیر دامنگیر بسیاری از جوامع بشری شده است. استفاده از مدلهای پیشبینی میتواند بعنوان ابزاری کارآمد در مدیریت و کنترل بیماریها، کاهش مرگ ...
بیشتر
یشبینی تعداد افراد مراجعهکننده به بیمارستانها در ارتباط با پارامترهای اقلیمی از موضوعات قابل بحت و تأمل است که با تغییرات اقلیمی و گسترش شهرنشینی و آلودگی هوا در دهههای اخیر دامنگیر بسیاری از جوامع بشری شده است. استفاده از مدلهای پیشبینی میتواند بعنوان ابزاری کارآمد در مدیریت و کنترل بیماریها، کاهش مرگ و میر و برنامهریزیها مورد توجه قرار گیرد که در این پژوهش دو مدل شبکه عصبی مصنوعی و رگرسیون لوجستیک (لاجیت) به عنوان ابزاری کارآمد در پیشبینی فرآیندهای غیرخطی و پیچیده جهت پیشبینی میزان مراجعهکنندگان بیماری آسم در شهر سنندج در ارتباط با پارامترهای اقلیمی مورد بررسی قرار گرفت. دادههای مورد بررسی در بازه زمانی 8 ساله (2008-2001) از ایستگاه هواشناسی سینوپتیک سنندج و بیمارستانهای توحید و بعثت در سطح شهر سنندج اخذ گردید. سپس، پارامترهای اقلیمی به عنوان ورودی و میزان مراجعهکنندگان بیماری آسم بعنوان خروجی مدلها در نظر گرفته شدند. نتایج حاصل از بررسی نشان داد که مدل شبکه عصبی با ورود پارامترهای متوسط فشار QFE و میانگینهای حداقل و حداکثر دمای ماهانه و همچنین میانگین دمای ماهانه با دقت قابل قبولی میزان مراجعهکنندگان بیماری آسم را پیشبینی میکند به طوری که ضریب همبستگی دادههای واقعی و پیشبینی شده برابر با 99/0 است که در سطح 01/0 معنیدار هستند. پارامترهای ورودی در روش لاجیت نیز نشان میدهد که میزان مراجعهکنندگان بیماری آسم از پارامترهای میانگین حداقل دما، متوسط فشار QFF و متوسط سرعت باد (نات) تأثیر میپذیرند. نسبت لگاریتمی هر کدام از پارامترهای فوق بر روی تعداد مراجعهکننده به ترتیب با ضریب بتای 517/0-، 734/0- و 977/0- معنیدارند و از میان پارامترهای اقلیمی نیز عنصر باد به مراتب بیشتر از سایر پارامترها بر روی میزان تعداد افراد مراجعهکننده به بیمارستان تأثیر گذار است. در مجموع از بین دو مدل غیرخطی مورد بررسی، مدل شبکه عصبی مصنوعی، قابلیت و دقت بیشتری را نسبت به مدل لاجیت نشان داد.
آب و هواشناسی
دکتر علی محمدخورشیددوست؛ فریبا اسفندیاری؛ سید اسعد حسینی؛ پروانه دولتخواه
دوره 22، شماره 65 ، آبان 1397، ، صفحه 141-162
چکیده
یکی از روشهای نوین در زمینه پیشبینی فرآیندهای هیدرولوژیکی و ژئومورفولوژیکی شبکههای عصبی مصنوعی از مؤلفههای هوش مصنوعی است که در جهت پیادهسازی ویژگیهای شگفت انگیز مغز انسان در یک سیستم مصنوعی میکوشند و ابزاری قدرتمند در زمینهی مدلسازی و پیشبینی پارامترهای ژئومورفولوژیاند که ...
بیشتر
یکی از روشهای نوین در زمینه پیشبینی فرآیندهای هیدرولوژیکی و ژئومورفولوژیکی شبکههای عصبی مصنوعی از مؤلفههای هوش مصنوعی است که در جهت پیادهسازی ویژگیهای شگفت انگیز مغز انسان در یک سیستم مصنوعی میکوشند و ابزاری قدرتمند در زمینهی مدلسازی و پیشبینی پارامترهای ژئومورفولوژیاند که در این پژوهش جهت برآورد میزان رسوب حوضه رود ارس استفاده شده است. بدین منظور از آمار دبی، رسوب و بارش ماهانه ایستگاه هیدرومتری بران واقع در حوضه آبریز دره رود از زیر حوضههای مهم حوضه رود ارس در دشت مغان در طول دوره آماری 34 ساله (سال آبی 54-53 تا 87-86) استفاده گردید. بدین صورت که میزان دبی و بارش به عنوان ورودیهای شبکه عصبی مصنوعی و میزان رسوب به عنوان خروجی شبکه در نظر گرفته شدند. به منظور پیادهسازی مدل از امکانات و توابع موجود در محیط برنامه نویسی نرم افزارهای MATLAB/2010 و SPSS/21 بهره گرفته شد. سپس به ارزیابی عملکرد مدل، از طریق معیارهای آماری از جمله ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مربعات خطا، میانگین مطلق خطا، ضریب همبستگی و همچنین میانگین درصد نسبی خطا پرداخته شد. نتایج به دست آمده ضمن تأیید توانایی مدل شبکه عصبی مصنوعی نشان داد که انطباق خوبی بین مقادیر پیشبینی شده و مشاهداتی وجود دارد بهطوری که میانگین خطای این مدل با دادههای مشاهداتی برابر 9/0 درصد و ضریب همبستگی 99/0 است که در سطح 01/0 نیز معنیدار گشته است. نتایج حاصل از این پژوهش نشان داد که مدل شبکه عصبی مصنوعی از دقت بالایی در برآورد میزان رسوب در حوضه مورد بررسی برخوردار است. نتایج حاصل میتواند در مدیریت و برنامهریزی حوضههای آبخیز و مدیریت منابع آبی و طبیعی بویژه در بخشهای کشاورزی، صنعت، شرب و همچنین پیشبینی وضعیت رسوبگذاری در مخزن سدها مفید باشد.
آب و هواشناسی
محمود هوشیار؛ بهروز سبحانی؛ سید اسعد حسینی
چکیده
افزایش دما و گرمایش جهانی از بزرگترین چالشهایی است که بشر در قرن بیست و یکم با آن مواجه است. تغییرات در پارامترهای اقلیمی به ویژه دما و بارش به عنوان مهمترین پارامترهای اقلیمی میتواند فرایندهای هیدرولوژیکی، کشاورزی، محیط زیست، بهداشت، صنعت و اقتصاد را تحت تاثیر قرار دهد. بنابراین چشم انداز تغییرات آن، کمک ...
بیشتر
افزایش دما و گرمایش جهانی از بزرگترین چالشهایی است که بشر در قرن بیست و یکم با آن مواجه است. تغییرات در پارامترهای اقلیمی به ویژه دما و بارش به عنوان مهمترین پارامترهای اقلیمی میتواند فرایندهای هیدرولوژیکی، کشاورزی، محیط زیست، بهداشت، صنعت و اقتصاد را تحت تاثیر قرار دهد. بنابراین چشم انداز تغییرات آن، کمک فراوانی به چالشهای مدیران و برنامهریزان محیطی خواهد نمود. لذا در این پژوهش به منظور بررسی روند تغییرات دماهای حداکثر در طول دوره آماری پایه (2005-1961) و همچنین چشم انداز تغییرات آتی دماهای حداکثر در یک دورهی 30 ساله (2051-2021) در ایستگاه سینوپتیک ارومیه با کاربست مدل ریزمقیاس گردانی SDSM پرداخته شد. بدین منظور ابتدا با استفاده آزمون ناپارامتری من- کندال و تخمینگر شیب سن، روند تغییرات این پارامتر بررسی شد. سپس میزان کار آیی مدل SDSM با استفاده از دادههای مشاهداتی و مدل شده مرکز ملی پیشبینی محیطی (NCEP) و شاخصهای MSE، RMSE، MAE و همچنین ضریب تعیین و همبستگی مورد ارزیابی قرار گرفت. بعد از اطمینان از دقت مدل، با استفاده از مدل گردش عمومی CanESM2 تحت سه سناریوی RCP2.6 و RCP4.5 و RCP8.5 چشم انداز آتی دماهای حداکثر و حدی در دوره (2051-2021) بررسی گردید. نتایج نشان داد که در طول دوره آماری پایه، دما دارای روند افزایشی است اما معنیداری روند مورد تأیید قرار نگرفت. نتایج حاصل ارزیابی مدل SDSM نیز نشان داد که مدل مذکور توانایی لازم جهت مدلسازی دمای حداکثر را دارد. بر اساس نتایج بدست آمده از دادههای مدل CanESM2 میزان دماهای حداکثر افزایش خواهد یافت که این میزان برابر با 7/۰ درجه سلسیوس نسبت به دورهی پایه میباشد. از نظر فصلی نیز بیشترین و کمترین تغییرات مربوط به تابستان با 6/1 درجه سلسیوس و فصل زمستان با 1/0 درجه سلسیوس میباشد.