ژئومورفولوژی
محمدحسین رضایی مقدم؛ خلیل ولیزاده کامران؛ صغری اندریانی؛ فرهاد الماس پور
دوره 19، شماره 52 ، تیر 1394، ، صفحه 163-183
چکیده
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد ...
بیشتر
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحیحات رادیومتریک با استفاده از روابط موجود در محیط مدل از نرمفزار Erdas فرمولنویسی شد. همچنین از شاخصهای گیاهی NDVI، خاک بایر (BI) و سه مولفه اصلی آنالیز مولفههای اصلی (PCA) بهعنوان ورودی در کنار دیگر باندها بـرای افزایش دقت طبقهبـندی مورد استفاده قرار گرفت. از طرفی توابع کرنلها و رتبههای چندجملهای روش ماشین بردار پشتیبان (SVM) مورد ارزیابی قرار گرفت و بهترین نتیجه این روش با روش شبکه عصبی مصنوعی (ANN) مورد مقایسه قرار گرفت. نتایج نشان داد که دقت روش ماشین بردار پشتیبان 92٪ با ضریب کاپا 91/0 و روش شبکه عصبی 89٪ با ضریب کاپا 87/0 میباشد همچنین جایی که کلاسها رفتار طیفی مشابهی را از خود نشان میدهند روش SVM کارایی بهتری از خود نشان میدهد.
صغری اندریانی؛ محمد حسین رضائی مقدم؛ خلیل ولیزاده کامران؛ فرهاد الماس پور
دوره 19، شماره 52 ، تیر 1394
چکیده
تهیه نقشه های کاربری و پوشش اراضی برای برنامه ریزی و مدیریت منابع طبیعی امری ضروری می باشد. در این بین استفاده از داده های سنجش از دور با توجه به ارائه اطلاعات به روز ، پوشش تکراری ، کم هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده ...
بیشتر
تهیه نقشه های کاربری و پوشش اراضی برای برنامه ریزی و مدیریت منابع طبیعی امری ضروری می باشد. در این بین استفاده از داده های سنجش از دور با توجه به ارائه اطلاعات به روز ، پوشش تکراری ، کم هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین ، با توجه به جدید بودن این تصاویر ، تصحیحات رادیومتریک با استفاده از روابط موجود در محیط مدل ساز نرم افزار Erdas فرمول نویسی شد. همچنین از شاخصهای گیاهی NDVI، خاک بایر (BI) و سه مولفه اصلی آنالیز مولفه های اصلی (PCA) به عنوان ورودی در کنار دیگر باندها برای افزایش دقت طبقه بندی مورد استفاده قرار گرفت. از طرفی توابع کرنلها و رتبه های چند جمله ای روش ماشین بردار پشتیبان (SVM) مورد ارزیابی قرار گرفت و بهترین نتیجه این روش با روش شبکه عصبی مصنوعی(ANN) مورد مقایسه قرار گرفت. نتایج نشان داد که دقت روش ماشین بردار پشتیبان92٪ با ضریب کاپا 0.91 و روش شبکه عصبی 89٪ با ضریب کاپا 0.87 می باشد. همچنین جایی که کلاسها رفتار طیفی مشابهی را از خود نشان می دهند روش SVM کارایی بهتری از خود نشان می دهد.