آب و هواشناسی
رضا مکاریان؛ حسین صدقی؛ سمیرا نعمتی؛ حسین بابا زاده
چکیده
تبخیر را میتوان نقطه آغازین چرخه هیدرولوژیک آب به شمار آورد، که برآیند مجموعه عوامل اقلیمی و جغرافیایی منطقه هیدرولوژیک میباشد و مستقیماً بر منابع آب اثر بخش است. این پدیده از یک سیستم پیچیده و غیرخطی پیروی میکند، که تخمین دقیق آن بسیار دشوار است. از این رو استفاده از مدلهای ریاضی مانند سیستم استنتاج فازی و شبکه عصبی کوهنن ...
بیشتر
تبخیر را میتوان نقطه آغازین چرخه هیدرولوژیک آب به شمار آورد، که برآیند مجموعه عوامل اقلیمی و جغرافیایی منطقه هیدرولوژیک میباشد و مستقیماً بر منابع آب اثر بخش است. این پدیده از یک سیستم پیچیده و غیرخطی پیروی میکند، که تخمین دقیق آن بسیار دشوار است. از این رو استفاده از مدلهای ریاضی مانند سیستم استنتاج فازی و شبکه عصبی کوهنن با درک رفتار های غیر خطی سیستم برای حل این مشکل مناسب است. طبقهبندی پایگاه اطلاعات بزرگ نظیر ایستگاههای تبخیرسنجی موجب میگردد حجم زیادی از اطلاعات با اختصاص به چند دسته متجانس کوچکتر براحتی در روشهای مختلف مدلسازی مورد استفاده قرار گیرد. خوشهبندی در این پژوهش با استفاده از دادههای اقلیمی منجر به قرار گرفتن ایستگاههای تبخیرسنجی در 7 خوشه گردیدهاست و بین مقادیرحداکثر شاخصRS و حداقل واریانس محاسباتی خوشهها همخوانی وجود دارد، بطوریکه نسبت به ضریب تعیین RS و واریانس خوشهها روش شبکه عصبی کوهنن نسبت به روش فازی نتایج بهتری را نشان میدهد. تبخیر را میتوان نقطه آغازین چرخه هیدرولوژیک آب به شمار آورد، که برآیند مجموعه عوامل اقلیمی و جغرافیایی منطقه هیدرولوژیک میباشد و مستقیماً بر منابع آب اثر بخش است. این پدیده از یک سیستم پیچیده و غیرخطی پیروی میکند، که تخمین دقیق آن بسیار دشوار است. از این رو استفاده از مدلهای ریاضی مانند سیستم استنتاج فازی و شبکه عصبی کوهنن با درک رفتار های غیر خطی سیستم برای حل این مشکل مناسب است. طبقهبندی پایگاه اطلاعات بزرگ نظیر ایستگاههای تبخیرسنجی موجب میگردد حجم زیادی از اطلاعات با اختصاص به چند دسته متجانس کوچکتر براحتی در روشهای مختلف مدلسازی مورد استفاده قرار گیرد. خوشهبندی در این پژوهش با استفاده از دادههای اقلیمی منجر به قرار گرفتن ایستگاههای تبخیرسنجی در 7 خوشه گردیدهاست و بین مقادیرحداکثر شاخصRS و حداقل واریانس محاسباتی خوشهها همخوانی وجود دارد، بطوریکه نسبت به ضریب تعیین RS و واریانس خوشهها روش شبکه عصبی کوهنن نسبت به روش فازی نتایج بهتری را نشان میدهد.