نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استاد گروه جغرافیای طبیعی، دانشگاه تبریز، تبریز، ایران

2 گروه جغرافیای طبیعی دانشگاه تبریز

3 دانشجوی دکتری ژئومورفولوژی، دانشگاه تبریز

10.22034/gp.2020.10631

چکیده

هدف از تحقیق حاضر اولویت­بندی عوامل موثر بر وقوع زمین لغزش با استفاده از شاخص آنتروپی شانون و تهیه نقشه خطر پذیری حوضه با استفاده از روش اولویت بندی می باشد.به این منظور با استفاده از تصاویر ماهواره­ای ASAR از سنجنده ENVISAT در سال­های 2003 الی 2009 و بازدیدهای صحرایی 17 پهنه لغزشی به صورت انتخابی شناسایی و نقشه پراکنش زمین لغزش­های منطقه مورد مطالعه در محیط نرم افزار ARCgis تهیه گردید. لایه­های اطلاعاتی شیب، جهت شیب، هیپسومتری، نسبت مساحت سطح(ASR)، شاخص موقعیت توپوگرافی (TPI)، شاخص طول شیب(ALS)، شاخص رطوبت(TWI)، زمین شناسی، کاربری اراضی، شاخص پوشش گیاهی نرمال شده(NDVI)، فاصله از گسل، فاصله از رودخانه و فاصله از جاده به عنوان عوامل موثر بر وقوع زمین لغزش شناسایی و نقشه­های مذکور در محیط سامانه اطلاعات جغرافیایی تهیه ورقومی گردید.اولویت بندی عوامل موثر با استفاده از شاخص آنتروپی شانون نشان داد که لایه­های جهت شیب دامنه، کاربری اراضی، ارتفاع، شیب، شاخص پوشش گیاهی نرمال شده و فاصله از رودخانه بیشترین تاثیر را بر وقوع زمین لغزش حوضه و عوامل شاخص رطوبت، زمین­شناسی و شاخص موقعیت توپوگرافی کمترین تاثیر را داشته اند. همچنین تهیه نقشه خطر زمین لغزش با استفاده از مدل آنتروپی و جمع نقشه­های وزنی در محیط GIS بدست آمده است. راساس نقشه پهنه بندی خطر زمین لغزش، مناطق واقع در شمال شرق برخی مناطق مرکزی و جنوب غرب دارای خطر بسیار کم تا کم می باشند، در حالیکه بیشتر مناطق مورد مطالعه دارای خطر متوسط تا بسیار زیاد می باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Landslide hazard zonation in Taleghan watershed using Shannon entropy index

نویسندگان [English]

  • Shahram Roustaie 1
  • Davod Mokhtari 2
  • Zahar Ashrafi Fini 3

1 Professor, Department of Geography, University of Tabriz,

2 Department of Geography, University of Tabriz

3 PHd Candidate in Geomorphology, University of Tabriz

چکیده [English]

Introduction
Landslide is one of the most important and disastrous natural hazards which can bring many financial losses and heavy casualties worldwide every year.
Entropy means a quantity of disorder between causes, results or decisions taken in different situations, it can be highly effective particularly in geomorphological studies such as landslide, where existing data are confused with uncertainties.
Material and Methods
Topographic maps 1: 25000 scaled, geological map of Makran and Marzanabad scale map 1: 100000 and ASAR images from ENVISAT since 2003 till 2009 in the region were used as the main data in this model. Active landslide also detected in the basin. Then, 17 zones were selected via field visiting and Google earth software images. Also location of landslides recorded using GPS. Analyzing the data and providing the required maps were done using Arc Gis10 and SAGA.
A total number of 13 effective parameters were selected based on condition of studied areas for next step. Then slide layer, slide direction, elevation, geology, land use, distance to fault, distance from the river and distance from the road obtained by Arc Gis10 analysis, vegetation layer (NDVI) measured by ENVI4.2 software and the layers of surface area ratio (ASR), topography index (TPI), Topographic Wetness Index (TWI) and slide length index (SLS ) were analyzed by SAGA software. After providing the information layers and importing the landslide locations, the properties of each slip extracted due to the mentioned layers and scoring was regarding to the role of each factor in the occurrence of slide. And the primary matrix was formed according to the entropy method. The decision matrix contains information which can be evaluated by entropy as a criterion. Then by calculating the entropy matrix and weight of 13 factors (WJ), the (HI) index will be obtained as landslide risk hazard
 
Results and discussions
At first due to the characteristics of the occurred landslide, each class was scored from the information layers which were obtained by examining the region after two field visits, study of aerial photographs and satellite imagery and identification of the affecting factors and their roles to create slip. Then the information layers used in the research were categorized and scored as a raster data and utilized as the main data in the formation of an entropy matrix for further analysis.
To convert qualitative values into quantitative a bipolar scale is used. The bipolar interval scale is a general method for ranking quantitative and qualitative indexes. Measurement in this technique is based on a 10-point scale so that zero specifies the lowest possible value which is practically comprehensible and ten represents the maximum possible value of the intended index. The middle point is also the point of dividing the scale into favorable and unfavorable data.
 
Conclusion
Prioritizing the effective factors using the Shannon entropy index indicates that data layers such as slides direction, land use, elevation, slope, normalized vegetation index and the distance from the river had the greatest effect on the landslide occurrence in the area. And the topography, moisture index, geology, distance from fault and road, and the rest of the information layers had the least effect.
Based on landslide hazard map of Taleghan watershed, very low to low risks regions are some areas in the northeast, central and southwest regions, while most of the studied areas have a moderate to very high risks. In general, site locations which could be at risk in the event of a landslide are limited to residential areas, roads, rivers, lakes and power lines. There are various land use in the region and Residential and demographic areas are at the top of the priority list. One the other hand there is Taleghan dam which can create a much greater potential risk if landslide happens at its location.

کلیدواژه‌ها [English]

  • Landslide hazard
  • Shannon entropy index
  • GIS
  • Taleghan watershed
- اصغرپور، محمدجواد، 1391، تصمیم­گیریهایچندمعیاره، انتشارات دانشگاه تهران، چاپ دهم.ص 198- 195. تهران
- .محمدخان، شیرین، ویسی، عبدالکریم، باقری، کیوان (1393) .پتانسیل سنجی خطر زمین لغزش با استفاده از مدل آنتروپی، مطالعه­ی موردی:(منطقه کوهستانی شیرپناه در جنوب غرب استان کرمانشاه(، فصلنامه­ی جغرافیاییسرزمین، سال یازدهم، شماره­ی 44، ص89-102
- مقیمی، ابراهیم، باقری، س. صفرراد، ط، 1391، پهنه بندی خطر وقوع زمین لغزش با استفاده از مدل، آنتروپی(مطالعه موردی: اقدیس نسار زاگرس شمال غربی)، مجلهپژوهش­هایجغرافیایطبیعی، شماره 79، ص90-77.
- یمانی، مجتبی، گورابی، ابوالقاسم، پیرانی، پریسا، مرادیپور، فاطمه، شعبانی، عراقی، عارفه(1393). ارزیابی ژئوموفولوژیکی پتانسیل زمین لغزش تاقدیس سیاه کوه، غرب ایران، فصلنامه­ی برنامه ریزیوآمایشفضا، دوره­ی هجدهم، – شماره­ی 3، ص 147-170
-http: // www. jennessent. com/ arcview/ surface _ areas.htm (connected: 10.08.2003).
-Baas, A., 2007, Complex Systems in Aeolian Geomorphology, Geomorphology, Vol. 91,PP.311-331.
-Bednarik, M., Magulova, B., Matys, M., Marschalko, M., 2010, Landslide Susceptibility Assessment of the Kralˇovany–Liptovsky´ Mikulaš Railway Case Study, Physics and Chemistry of the Earth, Vol. 35, PP.162-171.
-Constantin, M., M. Bednarik, M. C. Jurchescu, and M. Vlaicu. 2011. Landslide susceptibility assessment using thebivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 63: 97–406.
-Fathi, Mohmmad Hoessin, Khohdel Kazem, Amir, Kandi Shoreh, Ashrafifeini Zahra, Khaliji,Mohammad Ali (2015) The combination of spectral and spatial data in zoning oflandslidesusceptibility (Case study: Sangorchay reservoir) Journal of Biodiversity and Environmental Sciences (JBES). Vol. 6, No. 2, pp 515-527.
-Fell, R., Corominas, J., Bonnard, CH., Cascini, L., Leroi, E., Savage, Z.S., 2008, Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning,Engineering Geology, Vol. 102, PP. 85-98.
-Hattanji, T., & Moriwaki, H., (2009), “Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides”, Journal of Geomorphology, No, 103, Pp. 447-454.
-H.Hong. Haghibi، S. A. Pourghasemi. H. R (2016). GIS-based landslide spatial modeling in Ganzhou City, China, Arab J Geosci Journal, 9:112.
-J,Davis. L. Blesius (2015). A Hybird physical and Maximum- Entropy Landslide Susceptibility Model. Entropy Journal, 17, 4271-4292.
Jenness, J. 2002. Surface Areas and Ratios from Elevation Grid, Jenness Enterprises,
-K, Ch. Devkota. A. D. Regmi. H. R. Pourghasemi, K, Yoshida. B, radhan. I, Ch. Ryu. M, R.  Dhital. O, F. Althuwaynee (2013). Landslide susceptibility mapping using certainty factor, Index   of Entropy and Logestic Regression in GIS and their comparison at Mugling- Narayanghat road section in Nepal Himalaya.Natural hazard, 65:135-165.
-Koehorst, B. A. N., O. Kjekstad, D. Patel, Z. Lubkowski, J. G. Knoeff and G. J. Akkerman. 2005. Work package 6, Determination of Socio-Economic Impact of Natural Disasters, Assessing socio-economic Impact in Europe. 173p.
-Kumar Dahal, R., 2008, Predictive Modeling of Rainfall-induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-evidence, Geomorphology, Vol. 102, PP.496-510.
-Luna, B., Langbein, W.B., 1963, The Concept of Entropy in Landscape Evolution,Geological Survey Professional Paper, U.S. Govt. Print. Off, Washington
-Minasny, B., McBratney, A., Blanes, S., 2008, Quantitative Models for Pedogenesis – A Review, Geoderma, Vol. 144, PP. 140-157.
-Moore, I.D., P.E. Gessler, G.A. Neslesn and G.A. Peterson. 1993. Soil attributes prediction using terrain analysis.Soil Sci. Society American J. 57(2): 443-452.
-Pourghasemi, H. R., M. Mohammady, and B. Pradhan. 2012a. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran, Catena 97: 71–84.
-Pourghasemi H.R., B., Pradhan, C., Gokceoglu and K. Deylami Moezzi. 2012c. A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS.Geomatics Nat.Hazards&Risk. doi:10.1080/19475705.2012.662915.
-Ramakrishna, D., M.K., Ghose, R., Vinu Chandra and A. Jeyaram. 2005. Probabilistic techniques, GIS and remotesensing in landslide hazard mitigation: a case study from Sikkim Himalayas, India. Geocartography Int. 20 (4):53–58.
-Shannon, C.E. 1948. A mathematical theory of communication. Bulletin System Technol. J. 27: 379–423.
- Sharma, L.P., N. Patel, M. K. Ghose and P. Debnath. 2010. Influence of Shannon’s entropy on landslide-causing parameters for vulnerability study and zonation-a case study in Sikkim, India. Arab. J. Geosci. 5 (3): 421-431.
-Yufeng, S. and J. Fengxiant. 2009. Landslide Stability Analysis Based on Generalized Information Entropy,International Conference on Environmental Science and Information Application echnology. 83-85. DOI10.1109/ESIAT.2009.258.
-Youssef A M Pourghasemi H R El-Hadad B A Dhahry B K(2016) Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia، Bull Eng Geol Environ، 75:63–87.
-Wan, S. 2009. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng. Geo. 108: 237-251
-Zongji, Y. Jianping; Q. Xiaogang., ZH. (2010). "Regional Landslide Zonation Based on EntropyMethod in Three Gorges Area, China", Fuzzy Systems and Knowledge Discovery (FSKD).Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 1336- 339,Doi:10.1109/FSKD.2010.5569097.Downloaded from