نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه آب و هواشناسی ماهواره ای، واحد مرند، دانشگاه آزاد اسلامی، مرند، ایران

2 دانشیار دانشگاه تبریز

3 گروه جغرافیای طبیعی دانشگاه تبریز

4 دانشگاه تبریز

10.22034/gp.2022.10845

چکیده

اخیراً حدهای بالا و دنباله بالایی توزیع فراوانی بارش مورد توجه بسیار بوده است. در این راستا به فراخور ویژگیهای جغرافیایی هر پهنه، آستانه های متعدد و متنوعی برای این ویژگی بارش معرفی و به کار گرفته شده است. در تحقیق حاضر، جهت بررسی و تحلیل روند رویداد حدی بارش در استان تهران طی دوره آماری 2016-1983 ، از تعدادی از نمایه‌های ارائه شده توسط کمیته ملی اقلیم‌شناسی سازمان هواشناسی جهانی استفاده شده است. رفتار دنباله توزیع رویداد حدی بارش و تحلیل فراوانی و شدت این رویداد، با استفاده از مدل مقادیر اوج‌های بالاتر از آستانه (POT) بررسی شد. انتخاب آستانه مناسب جهت محاسبه اوج‌های بالاتر از آن آستانه با استفاده روش‌های صدک 95‌ام‌، نمودار میانگین باقیمانده عمر (MRL) و بازبینی مدل- پایه (MBC) انجام پذیرفت. تخمین پارامترهای توزیع با روش حداکثر درست‌نمایی و ارزیابی وقوع و شدت رویدادهای حدی با استفاده از میانگین فواصل زمانی بین رویدادها (ARIs) بررسی شد. نتایج حاصل از آزمون من-کندال نشان داد که در ایستگاه‌های مورد مطالعه روند معنی‌داری در نمایه‌های حدی بارندگی در دوره آماری 2016-1983 تجربه نشده است. بررسی منحنی‌های رشد نشان داد که در دوره آماری 34 ساله (2016-1983) بیشتر رویدادهای حدی مشاهده شده در ایستگاه‌ها دوره بازگشت 1 تا 10 سال دارند. بررسی نمودارهای Q-Q و آماره χ2 نشان داد که مدل POT قابلیت زیادی جهت مدل‌سازی رویدادهای حدی در منطقه مورد مطالعه دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Exploring the Extreme Precipitation in Tehran Province Using the Peak Over Threshold Values Model

نویسندگان [English]

  • Ebrahim Ahmadzadeh 1
  • Khalil Valizadeh Kamran 2
  • Davod Mokhtari 3
  • ali akbar rasoli 4

1 Departement of Satellite Climatology , Marand Branch, Islamic Azad university, Marand , Iran

2 Associate professor of University of Tabriz

3 Department of Geography, University of Tabriz

4 university of tabriz

چکیده [English]

Introduction
Recently, high extreme and frequency distribution of higher sequence of precipitation have been attended more. Through this, because of geographical characteristics of each area, diverse and different thresholds have been presented and utilized for the mentioned precipitation’s characteristics. Through the present research, for exploring and analyzing the extreme precipitation event in Tehran through the 1983-2016 statistical periods, some of the indexes presented by World Meteorological Organization Committee were utilized.
Data and Method
The study area in the present study is Tehran province. Tehran province is located in the center of Tehran, with an area of ​​about 12981 square kilometers, between 34 to 36.5 degrees north latitude and 50 to 53 degrees east longitude. Data from Abali and Mehrabad synoptic stations were selected daily for use in the present study during the statistical period of 2016-1983. Before analysis, the data were subjected to quality control and homogeneity test. In cases where for any reason there were incomplete data in the data series of each station, they were reconstructed and supplemented.
Analysis of non-parametric I-Kendall trend and age slope estimator
In the present study, in order to study and analyze the trend of limit events, the indexes provided by the National Climate Committee of the World Meteorological Organization and the Acceptable Research and Climate Prediction Research Program, abbreviated as ETCCDMI, are used. These indexes are part of a set of indexes presented by the World Meteorological Organization's Working Group on Climate Change (Peterson et al., 200: 341), which are used by numerous researchers for analysis in different parts of the world.
Model of peak values  Above the threshold (POT)
The POT first fits the set limit and then one above this threshold with the generalized parity distribution. In the present study, the ninety-fifth percentile was considered as the initial threshold (Coelho et al., 2008: 120; Friederichs, 2010, 211). The test threshold was then set to determine whether it was appropriate or inappropriate. In recent years, two visual methods have been developed to select the threshold. In the present study, methods were used to validate the selected threshold. The first method is the description of residual life, also known as conditional excess (Lechner et al., 1992: 229). In the MRL method, the excess rate is plotted from the threshold to the threshold .
How to estimate GDP distribution parameters using the maximum likelihood method
For different estimates, there are several methods such as torques, possible weighted moments, the existence of correct representation, and so on. However, the most efficient performance method is evaluated as the most complete method (Rao and Hamed, 2000: 21). Therefore, in the present study, the correct method of displaying the work was used.
Results and Discussion
The results of man-condensate precipitation statistics at the studied stations. The results obtained from Mann-Kendall test showed that no significant trend in success level was experienced in the studied stations in the statistical period of 1983-2016. Except that in Abali station, the reduction of the number of consecutive dry days and in Mehrabad station, the reduction of the one-day rate (PX1day) at the level of 90% is significant. One day exhibition at Mehrabad station is a downward trend in the level of 90% confidence with the rate of 1.9 days in the last decade.
During the statistical period of 2016-1983, no significant trend was experienced in relation to the index of the number of values ​​for 5 consecutive days. The annual show on other days does not make sense. The number of days with more than 10 mm (R10) and the number of days with more than 20 mm (R20) and the number of days with threshold (Rnn) in the two study stations are not significant.
In this study, using the Mann-Kendall non-parameter test and sen slope estimator, the final rainfall trend analysis was performed at Abali and Mehrabad stations. According to the results of the Mann-Kendall test, the display of consecutive dry days (CDD) showed a decrease of 8.5 days per decade at Abali station. But on consecutive wet days (CWD) the upward trends are not significant. The Daily Intensity Index (SDII) is also significant without trend. One day exhibition at Mehrabad station is a downward trend in the level of 90% confidence with the rate of 1.9 days in the last decade. In Abali station with confidence intervals (-0.08, -0.11) and Mehrabad station with confidence intervals (-0.09), the figure is zero. Therefore, in these stations, it has a thin sequence with finite torque that is close to producing a show.
The study of growth curves showed that in the 34-year statistical period (1983-2016), most events in stations have a return period of 1 to 10 years. In higher return periods, fewer observations are consistent. The confidence bands of the growth curves also showed to some extent that the deviation of the POT model is less even in the return periods. But as the return period increases, the confidence interval increases. This indicates that as the period increases, the uncertainty in the results increases that the extrapolation of the data is in the range beyond the time frame of the statistical period under study (34 years). Reliable bands have shown that return periods of 1000 years are too unreliable to use in practical applications.
Conclusion
The aim of this study is to investigate the changes in the intensity and frequency in Tehran province during the period 1983-1916. In this regard, the study of the initial trend of rainfall showed that in relation to the marginal rainfall, most of the backgrounds  had a downward trend in the region. The study of the sequence behavior of events and the frequency and intensity of these events, using them, are higher than the thresholds that have increased in frequency in the study areas. The results of this part of the study are highly consistent with the work of Rahimzadeh et al. (2009) who reported negative trends for cold-bounded appearances and thresholds for precipitation and positive trends for warm-range indices in 27 synoptic stations in Iran. . Rahimzadeh and Hedayat Dezfuli (2011) also showed intensification of heating and decrease along with extreme fluctuations and temperature limit power in Hormozgan province and Mohammadi and Taghavi research (2005) increased the frequency of hot limit indices and cold limit index indices in the city. Has stated Tehran. Maroufi et al. (2011) have achieved similar results in studying the trend of borderline events in the northern and southern coasts of Iran. Also, the estimates and severity of precipitation boundary events using the mean time intervals between events (ARIs) indicate return periods of 1 to 10 years for boundary precipitation. Finally, the resulting Q - Q diagrams and Chi - square test (χ 2) showed that the POT model has great potential for modeling precipitation limit events in the study area.

کلیدواژه‌ها [English]

  • Extreme Precipitation
  • Peak Over Threshold Values Model
  • ARIs Returning Period
  • Tehran Province
  • جهانبخش اصل، سعید؛ ترابی، سیما. 1383. بررسی و پیش بینی تغییرات دما و بارش در ایران. فصلنامه تحقیقات جغرافیایی. شماره 3 (74): 125-104.
  • رحیم­زاده ، فاطمه؛ هدایت دزفولی، اکرم؛ پوراصغریان، آرزو، ( 1390)، ارزیابی روند و جهش نمایه­های حدی دما و بارش در استان هرمزگان. جغرافیا و توسعه. شماره 21: 116-97.
  • رحیم‌زاده، فاطمه و عسگری، احمد، (1383)، نگرشی بر تفاوت نرخ افزایش دمای حداقل و حداکثر و کاهش دامنه شبانه روزی دما در کشور، فصلنامه تحقیقات جغرافیایی، شماره 73 ، صص 171-153 .
  • رستمیان، حمید. 1375. بررسی تغییرات سواحل جنوبی دریای خزر (با تأکید بر دما و بارش). پایاننامه کارشناسی ارشد، دانشکده علوم جغرافیایی، دانشگاه تربیت معلم تهران.
  • عساکره، حسین. .1391. تغییر توزیع فراوانی بارش­های فرین شهر زنجان. جغرافیا و برنامه­ریزی محیطی. سال 23، شماره 1: 66-51.
  • محمدخورشید دوست، علی، رسولی، علی‌اکبر، زنگنه، سعید، (1396)، مدل سازی و روندیابی شاخص‌های حدی دما و بارش حوضه آبریز دریاچه ارومیه، مجله مخاطرات محیط طبیعی، شماره 6. صفحه 194-175.
  • محمدی، حسین، تقوی، فرناز، (1384)، روند شاخص‌های حدی دما و بارش در تهران، پژوهشهای جغرافیایی، شماره 53، صص 172-151.
  • منتظری، مجید. 1388. تحلیل زمانی - مکانی بارش­های فرین روزانه در ایران. جغرافیا و برنامه­ریزی محیطی. سال 20، شماره پیاپی 34، شماره 2: 140-125.
  • میرموسوی، سید حسین. 1384. مطالعه نوسانات دما و بارش در منطقه شمال­غرب ایران به منظور ارزیابی روند تغییر عناصر اقلیمی. رساله دکتری، دانشگاه تبریز، گروه جغرافیای طبیعی.
  • Beck, F., Bárdossy, A., Seidel, J., Müller, T., Sanchis, E. F., Hauser, A) 2015( Statistical analysis of sub-daily precipitation extremes in Journal of Hydrology: RegionalStudies, 3: 337-358
  • Coelho, C. A. S.; Ferro, C. A. T.; Stephenson, D. B.; Steinskog, D.J. 2008. Methods for exploring spatial and temporal variability of extreme events in climate data. Journal of Climate 21: 2072-2092.
  • Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  • De Lima, M. I. P., Santo, F. E., Ramos, A., De Lima, L.M.P., 2013. Recent Changes in Daily Precipitation and Surface Air emperature Extremes in Mainland Portugal, in the Period 1941–2007. Atmospheric Research 127, 195–209.
  • Friederichs, P. 2010. Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 13:109–132, DOI 10.1007/s10687-010-0107-5.
  • Gilleland, E.; Katz, R.W. 2005a. Extremes toolkit (extRemes): weather and climate applications of extreme value statistics. NCAR. http://www.isse.ucar.edu/extremevalues/tutorial.pdf.
  • IPCC-TGICA. 2007. General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 2. Task Group on Scenarios for Climate Assessment. Intergovernmental Panel on Climate Change.
  • Jones, R. Hayley J. Fowler, Christopher, G. Kilsby and Stephe Blenkinsop, (2012). An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 an 2009. J.Climatology. DOI: 10.1002/joc.3503
  • Katz, R.W. 2010. Statistics of extremes in climate change. Climate Change 100: 71-76.
  • Kumar, S.; Merwade, V.; Kam J.; Thurner, K. 2009. Stream flow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology 374:171-183.
  • Klein Tank et al. (2006): “Changes in Daily Temperature and Precipitation Extremes in Central and South Asia”, Journal of Geophysical Research 111: D16105, DOI: 10.1029/2005JD006316.
  • Lin, X.G. 2003. Statistical modeling of severe wind gust, International Congress on Modelling and Simulation. Townsville 2: 620–625.
  • Liu B, Xu M, Henderson M, QI Y. (2005): “Observed Trends of Precipitation Amount, Frequency, and Intensity in China”, 1960-2000. Journal of Geophysical Research 110: D08103, Doi: 10.1029/2004 JD 00 4864.
  • Lechner, J.A.; Leigh, S.D.; Simiu, E. 1992. Recent approaches to extreme value estimation with application to wind speeds. Part I: the Pickands Method. Journal of Wind Engineering and Industrial Aerodynamics 41-44: 509-519.
  • Marofi, S.; Sohrabi, M.M.; Mohammadi, K.; Sabziparvar, A.A.; Zare Abyaneh, H. 2011. Investigation of meteorological extreme events over coastal regions of Iran. Theoretical and Applied Climatology 103:401–412, DOI 10.1007/s00704-010-0298-3.
  • Nandintsetseg B, Greene J.S, Goulden C.E. (2007): “Trends in Extreme Daily Precipitation and Temperature Near Lake Hovsgol”, Mongolia, International Journal of Climatology, 27: 341-347.
  • Peterson, T. C.; Folland, C.; Gruza, G.; Hogg, W.; Plummer, N. 2001. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. Rep. WCDMP-47, WMO-TD 1071, 143 pp. World Meteorol. Org., Geneva.
  • Rao, A. R.; Hamed, K. H. 2000. Flood Frequency Analysis, CRC Press.
  • Rodeh, H., Yosefi, Y., Masompur Samakosh, J., and Faizi, V. 2014. Spatiotemporal variability of extreme precipitation in Iran. J. Geograph. Plan. 25: 2. 25-36.
  • Yan, Z. and Coauthors. (2002): Trends of Extreme emperatures in Europe and China Based on daily Observations. Climatic Change, 53, 355–392-Karl TR, Nicholls N, Ghazi A. (1999): CLIVAR/GCOS/WMO: Workshop on Indices and Indicators for Climate Extremes, Climate Change, 42: 3-7.