نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار دانشگاه تبریز

2 عضو هیأت علمی دانشگاه تبریز، گروه آب و هواشناسی

3 استادیار گروه مهندسی آب دانشگاه گیلان

4 دانشجوی دکتری دانشگاه تبریز

10.22034/gp.2020.10850

چکیده

در این پژوهش با استفاده از محصولات ماهواره متئوست و TRMM نقش هر یک از خصوصیات فیزیکی ابر در میزان بارش مورد ارزیابی قرار گرفت. برای بررسی از سه مدل GPR­، TDوMLPBR استفاده شد. محصولات مورد استفاده در این پژوهش از ماهواره متئوست(MSG) عبارتند از : فشار قله ابر­، دمای قله ابر­، عمق نوری ابر­، فاز ترمودینامیکی ابر ­، میزان حجم آب موجود در ابر ­، شعاع مؤثر قطرات ابر  و نوع ابر. ابتدا محصولات در محیط نرم افزار متلب استخراج گردید و در مرحله بعد محاسبات با محصول بارش ماهواره TRMM انجام گرفت و ضریب خطا و ضریب تعیین بدست آمد. سرانجام میزان اثر بخشی هریک از مؤلفه­های خصوصیات فیزیکی ابر در میزان بارش در غرب ایران از طریق روش آنالیز حساسیت محاسبه و مشخص شد. نتایج نشان می دهد که در بین مؤلفه­های خصوصیات فیزیکی ابر نوع ابر بیشترین اثر بخشی را داشته و سپس شعاع مؤثر قطرات ابر و عمق نوری ابر به ترتیب در جایگاه دوم و سوم قرار دارند. در بین خصوصیات فیزیکی مورد بررسی کمترین اثر مربوط به فاز ابر می­باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation and analysis of the role of the physical properties of the cloud in the probable rainfall amount using satellite data MSG (Case study area: West of Iran)

نویسندگان [English]

  • Hashem Rostamzadeh 1
  • Aliakbar Rasuly 2
  • Majid Wazifedoust 3
  • nasser maleki 4

1 Assistant Professor, university of Tabriz

2 Faculty Member of Tabriz University

3 Department of Water Engineering, University of Guilan

4 Ph.D. student of Tabriz University

چکیده [English]

Introduction
Floods are a natural occurrence that causes casualties, livestock losses and damage to buildings, facilities, gardens, fields and natural resources every year. Therefore, rainfall estimates have long been considered by researchers in various fields, and along with the advancement of science and the emergence of new technologies, many advances have been made in the methods of rainfall estimation and evaluation and validation to achieve the best method. In the last twenty years, there has been a lot of progress in rainfall estimation methods. This advancement is due to the possibility of using a lot of information from different parts of the world, better understanding of atmospheric phenomena, exchanges and atmospheric rotations, improving the performance of models, progress in various surveillance tools such as radar and satellite and computer power. The methods used to estimate precipitation, especially in the short term, have shortcomings and are generally based on numerical forecasting models or the use of empirical analyzes, which are usually not very accurate for multi-hour intervals, so the use of satellite data It has been recommended as a supplement to address this problem, and doing so could greatly help increase the accuracy of numerical models for rainfall estimates.
Methodology
The study used the physical properties of a cloud of five waves between 2011 and 2015.
The data of the second generation of MSG meteorological satellite has good coverage on different regions of Iran. The satellite has 12 channels on the region and produces accurate products. Some of these products are in line with the physical properties of the cloud used in this study. These products are produced daily every 15 minutes and include cloud peak pressure (CTP), cloud peak temperature (CTT), cloud light depth (COT), thermodynamic cloud phase (CPH), and the volume of water in the cloud. Density (CWP) ‌ are the effective radius of cloud droplets (REFF) and cloud type (CT). Was obtained.
The criterion for the accuracy of the calculations was the two MAE statistics
Equation 1:
 
Equation 2:
 
Results and discussion
In this study, TRMM satellite data was considered as control data. After receiving TRMM images in MATLAB software environment, programming was performed and precipitation data were extracted from NETCDF files. After extracting TRMM satellite data, Meteosat satellite products were prepared through the CMSAF database and their data were extracted using MATLAB software code. In the study of waves, the coefficient of determination in the GPR model was 0.72 in the experimental section and 0.77 in the training section. In the TD model, the determination coefficient is calculated in the experimental section 0.64 and in the training section 0.87. However, in the neural network model, the coefficient of determination is 0.68 in the experimental section and 0.72 in the training section. The results show a good relationship between the components studied.
Investigating the Effects of Cloud Physical Properties: One of the methods for determining the effectiveness of each of the physical properties of the cloud in estimating rainfall is the sensitivity analysis method. After calculating the coefficient of determination and the error coefficient, the sensitivity of each of the physical properties in estimating the precipitation was performed by the method of calculating the sensitivity analysis. Sensitivity analysis was calculated for all waves. Calculations show that the cloud type is most effective, followed by the effective radius of the cloud droplets and then the optical depth of the cloud in the second and third positions, respectively. Among the physical properties studied, the lowest effect is related to the cloud phase.
To investigate the relationship between the physical characteristics of the cloud and the amount of precipitation, five waves of pervasive precipitation were selected between 2011 and 2015. Rainfall data from the region's stations were extracted. In order to validate the TRMM data, a comparison was made between the precipitation data of the selected stations and the precipitation of this satellite. Metoost satellite products were used to extract the physical properties of the cloud. After extracting the data, the physical properties of the cloud were matched to the time scale of the data and evaluated using TRMM satellite rain as a control.
Conclusion
The selection criteria were such that the waves lasted for at least two days and covered the entire area. On the day of the operation, the precipitation information of the meteorological stations of the region was obtained and also the precipitation information of TRMM satellite was extracted. In order to validate the data of TRMM satellite, the information of meteorological stations was compared with TRMM precipitation and obtained the necessary correlation. In order to get a better result, the matching of numbers was done in terms of time scale.
In the next step, using the meteosat satellite products, the physical properties of the cloud were obtained for all waves. Data were extracted at all stages for each pixel. Then the data correlation matrix was performed with three models of GPR, TD and MLPBR, the results of which are given in Table One. Due to the use of different models as well as the study of 8 physical properties of the cloud, the results show a high relationship between the components of the study, so that the coefficient of determination in the GPR model for the experimental and training sections was 0.7 and 0.77, respectively. These coefficients for the TD model in the experimental and training sections are 0.64 and 0.87, respectively. In the artificial network model (MLPBR), the coefficients obtained in the experimental and training sections are 0.68 and 0.72, respectively. The numbers obtained indicate a relatively good relationship between the components. Sensitivity analysis was performed. Sensitivity analysis results show that the cloud type feature has the greatest effect on precipitation and then the effective radius of cloud droplets and then cloud light depth are in the second and third positions, respectively. Among the physical properties studied, the lowest effect is related to the cloud phase.

کلیدواژه‌ها [English]

  • Meteosat Satelite
  • MSG
  • TRMM
  • cloud physical components
  • Artificial Neural Network
  • west of IRAN
- پورباقر کردی سید مهدی­، مباشری محمدرضا، فرج زاده اصل منوچهر(1386). امکان سنجی  استفاده از داده­های رادیوسوند و تصاویر ماهواره­ای مودیس در برآورد آب قابل بارش کلی، همایش ژئوماتیک تهران، سازمان نقشه بردای کشور.
- جوان خدیجه ، رسولی علی اکبر، عرفانیان مهدی، ساری صراف بهروز (1397). ارزیابی تطبیقی روشهای برآورد مقدار بارندگی در حوضه دریاچه ارومیه،  نشریه جغرافیا و برنامه ریزی، سال 25­، شماره 65­، صص 100-83.
- رستم زاده هاشم ، رسولی علی اکبر ، وظیفه دوست مجید ، ملکی ناصر(1397). مقایسه تطبیقی بارش بدست آمده از ماهواره TRMM ، GPM و رادار داپلر با داده های ایستگاههای زمینی (مطالعه موردی بارش فراگیر 26 تا 28 اکتبر 2015 در غرب ایران)، نشریه پزوهش های اقلیم شناسی در دست چاپ.
- رسولی علی اکبر، جهانبخش سعید، قاسمی احمدرضا(1393). بررسی ارتباط بین پارامترهای مهم ابر و بارش روزانه ایران،  فصلنامه تحقیقات جغرافیایی، سال 29­، شماره اول­، بهار 1393، شماره پیاپی 112.
- رسولی علی اکبر(1387). مبانی سنجش از دور کاربردی با تأکید بر پردازش تصاویر ماهواره­ای– انتشارات دانشگاه تبریز، چاپ اول.
- ضیائیان صادق (1396). پیش بینی کوتاه مدت بارشهای شدید تابستانه بر مبنای تلفیق محصولات ماهواره و پیش بینی عددی وضع هوا­، رساله دکتری­،  پژوهشکده هواشناسی و علوم جو.
- فیضی زاده بختیار، حسنی تبار محمد، جعفر زاده جعفر(1397). امکان سنجی  استفاده از تکنیک های تلفیق و بهینه سازی در ارتقاء پارامتر مقیاس سگمنت جهت پردازش شیء گرای تصاویر ماهواره. نشریه جغرافیا و برنامه ریزی، سال 25­، شماره 65­، صص 19-1.
- قلی زاده محمد حسین، دارند محمد (1389). پیش بینی بارش ماهانه با استفاده از شبکه­های عصبی مصنوعی(مورد تهران) پژوهش‌های جغرافیایی طبیعی­، شماره 71، صص 63-51.
- متکان، علی اکبر، آذری،حمید­، شکیبا علیرضا­، پورعلی، حسین(1388) قابلیت داده­های ترکیبی مادون قرمز و مایکروویو و غیرفعال سنجش از دور در تخمین بارندگی و پایش سیلاب، نشریه سنجش از دور ایران­، سال اول،شماره دوم­، تابستان 1388­، صص 44-31
- مسعودیان، ابوالفضل، جعفری شندی ، فاطمه(1393). بررسی رابطه سامانه های همدید مؤثر در بارش های سنگین پهنه کم بارش شمال ایران، نشریه جغرافیا و برنامه ریزی، سال 18،شماره 50، صص 331-305
 
-Askelson, M. (2007). On the use of satellite cloud top pressure data in the estimation of snowfall occurrence an d precipitation rates.23rd Conference on IIPS.
-Blaine Rister, Daniel.L Rubin. (2017). Piec wise convexity of artificial neural networks . J. neural networks . 94:34 -45.
-Bretherton, H.S., E.P. Matthew and E.B. Larissa. (2004). Relationships between Water Vapor-Path and Precipitation over the Tropical Oceans. J. Climate. 17:1517 -1528.
-Ioannidou, M. P., Kalogiros, J. A., & Stavrakis, A. K. (2016). Comparison of the TRMM Precipitation Radar rainfall estimation with ground-based disdrometer and radar measurements in South Greece.Atmospheric Research , 181, 172-185.
-Javan, K., & Azizzadeh, M. R. (2017). Evaluation of the TRMM-3B43V7 rainfall products on a monthly scale in the Northwest of Iran. Environmental Resources Research, 5(2), 153-168
-Hanna, W., D.M. Schultz and A.R. Irving. (2008).Cloud-Top Temperatures for Precipitating Winter Clouds. J of Appl. Meteorolo. and Climatolo. 47: 351-359.
-Houze, R. A. (1993). Cloud Dynamics. Academic Press, 573 pp.
-Henderson, D., S., Ch., D. Kummerow, D., A. Marks, and W., Berg, (2017), A Regime-Based Evaluation of TRMM Oceanic Precipitation Biases, Journal of Atmospheric and Oceanic Technology, Vol. 34, No. 12, pp 2613-2635
-Heymsfield, A.J., S. Matrosov and B. Baum. (2003). Ice Water Path – Optical Depth Relationships for Cirrus and Deep Stratiform Ice Cloud Layers. J of Appl. Meteorolo. 42: 1369 – 1389
-Hong ,y. adler , Rf. , Hossain,f.,Curtis , s. and Huffman Gj(2007) afirst approach to global run off simulation using satellite rain fall estimation. journal of water resour Resources research 43 , w08502.doi: 10.1029 1200, wr 005739
-Hosseini, S. H., Rezaei, M. J., Bag-Mohammadi, M., Altzibar, H., & Olazar, M. (2018). Smart Models to Predict the Minimum Spouting Velocity of Conical Spouted Beds with Non-porous Draft Tube. Chemical Engineering Research and Design.
-Leo, B., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
-Menzel, W.P., R.A. Frey, H. Zhang, D.P. Wylie, C. Moeller, R. Holz, B. Maddux, B. Baum, K. Strabala, and L. Gumley. (2008). MODIS Global Cloud-Top Pressure and Amount Estimation Algorithm Description and Results. Journal of applied meteorology and climatology. 47:11751198.
-Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2018). New approaches for estimation of monthly rainfall based on GEP-ARCH and ANN-ARCH hybrid models. Water Resources Management, 32(2), 527-545.
-Mong , HSU ,KL. sorooshian ,s .and Gao,x –(2004)precipitation estimation from remotecly sensed imagery using and artificial neural network cloud classification system  applied meteorology and climatology. 43 , 1834 – 1853 , doi: 10.1175/jam 2173.10
-Ouallouche, F., Lazri, M., & Ameur, S. (2018). Improvement of rainfall estimation from MSG data using Random Forests classification and regression. Atmospheric Research, 211, 62-72.
-Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., ... & Sadeghi, S. H. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific reports, 7(1), 4175.
-Pan, X., Cao, C., Yang, Y., Li, X., Shan, L., & Zhu, X. (2018, April). Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis. In Ninth International Conference on Graphic and Image Processing (ICGIP 2017) (Vol. 10615, p. 106154C). International Society for Optics and Photonics.
-Zeng, x, 1999. The relationship among precipitation cloud- top temperature and precipitable water over the tropics: j of climate. 12 ,2503 -2514