نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استاد دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استادیار دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

10.22034/gp.2020.10855

چکیده

خبندان یکی از پدیده­های مهم مورد مطالعه در اقلیم شناسی است که وقوع ناگهانی آن در ابتدا و انتهای فصل سرما، می تواند بسیار خطرزا برای بخش کشاورزی باشد. لذا برای مدل سازی و پهنه بندی شاخص­های آماری یخبندان ها در استان کردستان، داده­های مربوط به دمای حداقل روزانه 6 ایستگاه همدید برای یک دوره 16 ساله (2016 – 2001) از سازمان هواشناسی ایران اخذ گردیدند. در ادامه با استفاده از مدل­های رگرسیونی چند متغییره رابطه بین پنج شاخص آماری یخبندان ها یعنی متوسط تاریخ آغاز یخبندان، متوسط تاریخ خاتمه یخبندان، متوسط تعداد سالانه روزهای یخبندان، متوسط طول فصل یخبندان و متوسط طول فصل رشد با سه عامل ارتفاع، طول و عرض جغرافیایی مدل سازی گردید. در ادامه بر اساس مدل­های رگرسیونی به دست آمده برای هر شاخص، نقشه­های پهنه بندی آنها برای استان کردستان تهیه شدند.
نتایج حاصل از مدلسازی رگرسیونی بین شاخص­های مختلف یخبندان با سه عامل ارتفاع، عرض و طول جغرافیایی در استان کردستان نشان داد که این سه عامل به ترتیب می توانند 95، 90، 88، 80 و 72 درصد تغییرات مربوط به طول دوره رشد، وقوع اولین روز یخبندان، طول دوره یخبندان، فراوانی وقوع روزهای یخبندان و وقوع آخرین روز یخبندان را تبیین کنند. آرایش فضایی شاخص­های مختلف یخبندان در استان کردستان نیز نشان از یک آرایش غربی به شرقی در مقادیر شاخص­های مختلف یخبندان دارد. یعنی هر چه از جانب غرب به سمت شرق حرکت می کنیم تعداد فراوانی روزهای یخبندان و همچنین طول دوره یخبندان کاهش پیدا می کند و متعاقب آن فصل رشد افزایش پیدا می کند. متناسب با این تغییرات وقوع اولین روز و آخرین روز یخبندان نیز با تاخیرهای زیادی در بین نیمه شرقی و غربی این استان قابل مشاهده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modelling Topo-Climatology and Zoning Frost Statistical Indices in Kurdistan Province

نویسندگان [English]

  • Ebrahim Mesgari 1
  • Taghi Tavousi 2
  • Peyman Mahmoudi 3

1 Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran

2 Professor, Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran

3 Assistant Professor, Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran

چکیده [English]

Introduction
Frost is one of the most important phenomena in climatology, which is caused by changes in temperature over time. The sudden occurrence of this phenomenon at the beginning and end of the cold period can be very dangerous for the agricultural sector. Therefore, the awareness of the frost time - occurrence has long been considered by researchers (Thom and Shaw, 1958; Rosenberg and Myers, 1962; Schmidlin, 1986; Watkins, 1991; Waylen, 1988). In order to manage the reduction of the effects of this destructive climate phenomenon on the agricultural sector and the exploitation of large regional environmental capabilities, it is necessary to notice seriously the detailed study of this phenomenon and its characteristics at the land level. And this will be costly and time-consuming. Therefore, with the purpose of preventing the last two factors and at the same time achieving managerial goals, it seems necessary to accurately zoning and recognizing homogeneity and non-homogeneity between different areas in a large area.
 
Methodology
In the first step, daily minimum temperature data were adjusted based on Julius day, and the averages of the five indicators including the day of the onset of frost, the day of the end of frost, the annual number of days of frost, the length of the frost season, and the length of the growing season were extracted. In the second step, the five indicators were modeled separately with three land-climate factors, namely altitude, longitude, and latitude of the stations, using multivariate regression models. To measure the accuracy of the obtained models, four basic assumptions were examined (). Using the regression models obtained for all parts of the province, the statistical indicators of the frosts were calculated and generalized to the points without stations. Finally, using the kiriging method, each of the five frost indicators of the province was zoned.
 
Results and discussion
The correlation coefficient of three variables, altitude, length, and latitude with different frost indices was obtained by simultaneously entering these three variables into the regression model. And four basic assumptions for measuring the accuracy of the obtained models were confirmed. The earliest occurrence of the first day of frost arises between September 21 and October 27, and in the mountains of northwestern Kurdistan, especially the Chehel Cheshmeh. The latest occurrence of the first day of frost also happens in the eastern lowlands of the province between October 17 and November 23. The earliest occurrence of the last day of frost arises between March 22 and 30 in the lowlands of southeastern and southwestern Kurdistan, and the latest happens between May 24 and June 1 in the high peaks of the west and northwest of the province, such as Chehel Cheshmeh Heights at an altitude of about 3173 meters, Ketresh Mountain with a height of 2592 meters, and Vazneh Mountain with a height of 2697 meters. The highest frequency of frost is in the mountains of the region with more than 196 days and the lowest frequency is in the eastern borders of the province with less than 72 days. The northwest mountains with 235 to 248 days and the eastern and southeastern regions of Kurdistan with 123 to 137 days, respectively, have the longest and shortest length of the frosted season. The longest growing season belongs to the eastern part of the province. The average growing season in this area is between 214 and 227 days. However, within this area, small sections that are lower in height have a longer growth period. On the other hand, the shortest growth period is in the western and northwestern mountains, averaging 116 to 129 days.
 
Conclusion
The results show that the three factors of altitude, latitude, and longitude can determine between 72 and 95% of the changes in different frost indicators. These three factors explain the 95, 90, 88, 80, and 72 percent changes in the length of the growth period, the occurrence of the first day of frost, the length of the frosted period, the frequency of frost, and the last day of frost, respectively. The Coefficient of determination is 95% for the first day of frost and 72% for the last day of frost. It seems that other factors besides the three mentioned factors play a role in changing the date of the last day of frost. Therefore, based on the studies of Noohi et al. in 2007, Noohi et al. 2009, and Alijani et al. in 2014, it can be inferred that the end frosts of the cold period can be more than the type of the advection frost. In other words, the synoptic factors can play a more important role in the occurrence of the last days of frost and its variability. But the spatial arrangement of different frost indices in Kurdistan province indicates a western to the eastern arrangement in the values of different frost indices. This means that with more movement from west to east, the number of frost days as well as the length of the frosted period decreases, and as a result, the growing season increases. In accordance with these changes, the occurrence of the first day and the last day of frost also arose with many delays between the eastern and western parts of the province. A comparison of the maps obtained from this algorithm showed that this method can provide more accurate details of the frost indicators compared to the zoning that used only stationary data (Mianabadi et al., 2009 and Ziaee et al. 2006).

کلیدواژه‌ها [English]

  • frost
  • Multivariate Regression
  • Kurdistan Province
  • Mapping
  • Modeling
-بشیریان، ف.، یزدان پناه، ح.، مجد برزکی، م.، (1396)، تجزیه و تحلیل آماری یخبندان­های کشاورزی شهر کاشان. نشریه نیوار، شماره 99، صص 48-37.
-خسروی، م.، جبیبی نوخندان، م.، اسماعیلی، ر.، (1387)، پهنه‌بندی اثر خطر سرمازدگی دیررس بر روی باغات مطالعه‌ی موردی: شهرستان مهولات. فصلنامه جغرافیا و توسعه,دوره 6، شماره 12، 145-162.
-دارائی، م.، محمودی، پ.، ساری صراف، ب.، خورشید دوست، ع. م.، (1397)، تعیین تابع توزیع احتمالاتی یخبندان­های ایران طی 2010-1981. نشریه تحقیقات کاربردی در علوم جغرافیایی، سال هجدهم، شماره 50، صص 15-1.
-علیجانی، ب.، محمودی، پ.، ریگی چاهی، ا.، خسروی، پ.، (1389)، بررسی تداوم روزهای یخبندان در ایران، با استفاده از مدل زنجیره مارکوف، پژوهش­های جغرافیای طبیعی، شماره 73، 20 -10.
-علیجانی، ب.، محمودی، پ.، کلیم، د. م.، (1395)، اقلیم شناسی روزهای ذوب-یخبندان ایران. فضای جغرافیایی، سال 16، شماره پیاپی 56، صص ۱۹-۳۲.
-علیجانی، ب.، محمودی، پ.،کلیم دوست، م.، (1392)، رهیافتی جدید جهت تعیین طول دوره رشد بالقوه در ایران. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 27، شماره 5، 871-861.
-علیرضا، ض.، کامگار حقیقی، ع.، سپاسخواه، ع.، رنجبر، س.،(1385)، تعیین اطلس احتمال وقوع حداقل دمای استان فارس با استفاده از آمار هواشناسی. مجله علوم آب و خاک، دوره 10، شماره 3، ۱۳-۲۷.
-علیزاده، ا.، (1395)، اصول هیدرولوژی کاربردی، ویراست هفتم، انتشارات دانشگاه امام رضا (ع)،634.
-لشکری، ح.، کیخسروی، ق.، (1396)، روند تغییرات دمایی و پهنه بندی آغاز و پایان یخبندان شهر تهران. مجله مخاطرات محیط طبیعی، شماره 14، صص 86-63.
-مجرد قره باغ، ف.، (1376)، تحلیل و پیش بینی یخبندان در آذربایجان. رساله دکتری اقلیم شناسی، دانشکده علوم انسانی ،دانشگاه تربیت مدرس، 186.
-محمودی پ.، علیجانی، ب.، (1392)، مدل بندی رابطه بارش­های سالانه و فصلی با عوامل زمین اقلیم در کردستان. نشریه تحقیقات کاربردی علوم جغرافیایی دوره 13، شماره 31، 112-93.
-محمودی، پ.، خسروی، م.، مسعودیان، س،ا.، علیجانی، ب.، (1392)، اطلس اقلیم شناسی ویژگی­های آماری یخبندان­های ایران، فصلنامه تحقیقات جغرافیایی، دوره 28، شماره 4، 66-55.
-میان آبادی، آ.، موسوی بایگی،م.، ثنایی نژاد، ح.، نظامی، ا.، (1388)، بررسی و پهنه بندی یخبندان­های زود هنگام پاییزه، دیر هنگام بهاره و زمستانه با استفاده از GIS در استان خراسان رضوی. مجله آب و خاک (علوم و صنایع کشاورزی)، دوره 23، شماره 1، 90-79.
-نوحی، ک.، صحرائیان، ف.، پدرام، م.، صداقت کردار، ع.، (1387)، تعیین طول دوره بدون یخبندان با استفاده از تاریخ‌های آغاز و خاتمه یخبندان فرارفتی و تابشی در نواحی زنجان، قزوین و تهران. مجله علوم آب و خاک، دوره 12، شماره 46، ۴۴۹-۴۶۰
-Avissar, R., Mahrer, Y.  1988 a. Mapping frost-sensitive areas with a three-dimensional local-scale numerical model: Part I: physical and numerical aspects. Journal of Applied Meteorology, 27: 400-413.
-Avissar, R., Mahrer, Y. 1988 b. Mapping frost-sensitive areas with a three-dimensional local-scale numerical model: Part II: comparison with observation. Journal of Applied Meteorology, 27: 414-42.
-Bamler, R. 1999. The SRTM Mission: A world-wide 30 m resolution DEM from SAR interferometry in 11 days. Photogrammetric week 99. D. Fristsch and R. Spiller, Eds. Wichmann Verlag, Heidelberg.
-Boer, R., Campbell, L. C., Fletcher, D. J. 1993. Characteristics of frost in a major wheat – growing region of Australia. Australian journal of agricultural research, 44(8): 1731-1743.
-Chen, E., Allen, L. H., Bartholich, J. F., Bill, R. G., Sutherland, R. A. 1976. Satellite- sensed winter nocturnal temperature patterns of the Everglades agricultural area. J. Appl. Meteor., 18: 992-1002.
-Dalezios, N. R., Lavrediadou, E. E. 1995. Features of frost – affected areas from digital METEOSAT IR images. Advances Space Research, 15(11): 123-126.
-Figuerola, P. I., Mazzeo, N. A. 1997. An analytical model for the prediction of nocturnal and dawn surface temperature under calm, clear sky conditions. Agricultural and forest meteorology, 85: 229-237.
-Francois, C., Bosseno, R., Vacher, J. J., Seguin, B. 1999. Frost risk mapping derived from satellite and surface data over the Bolivian Altiplano. Agricultural and Forest Meteorology, 95: 113-1137.
-Geiger, R. 1966. The climate near the ground. Harvard University press, Cambridge, MA, 611 pp.
-Habibi Nokhandan, M. 2005. Climate and safety of high mountains of Iran (case study of the roads of Haraz and Firouzkooh), Ph.D., Physical geography - Climatology, Faculty of Geography, University of Tehran. [In Farsi]
-Hogg, W. H. 1966. Air frost in spring at long Ashton. Rep. Long Ashton Res. Stn., 1965: 290-298.
-Hogg, W. H. 1968: The duration of spring frosts on successive nights. Agric. Mem. No. 208.
-Jarvis, C. H., Stuart, N. 2000a. A comparison among strategies for interpolating maximum and minimum daily air temperatures, part I: The selection of “guiding” topographic and land cover variables. Journal of Applied Meteorology 40(6): 1060-1074.
-Jarvis, C. H., Stuart, N. 2000b. A comparison among strategies for interpolating maximum and minimum daily air temperatures, part II: The Interaction between the number of guiding variables and the type of interpolation method. Journal of Applied Meteorology 40(6): 1075-1084.
-Jurgens, C. 1997. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damage in agriculture based on Landsat TM data. International Journal of Remote Sensing, 18(17): 3583-3594.
-Kerdiles, H., Grodona, M., Rodriguez, R., Seguin, B. 1996. Frost mapping using NOAA AVHHR data in the Pampean region, Argentina. Agricultural and forest meteorology, 79: 157-182.
-Laughlin, G. P. 1982. Minimum temperature and lapse rate in complex terrain: influencing factors and prediction. Archives for Meteorology, Geophysics, and Bioclimatology, Ser. B, 30: 141-152.
-Laughlin, G. P., Kalma, J. D.  1987. Frost hazard assessment from local weather and terrain data. Agricultural and forest meteorology, 40: 1-16.
-Laughlin, G. P., Kalma, J. D.  1990. Frost risk mapping for landscape planning: a methodology. Theoretical and Applied climatology, 42: 41-51.
-Lindkvist, L., Gustavsson, T., Bogren, J.  2000. A frost assessment method for mountainous areas. Agricultural and forest meteorology, 102: 51-67.
-Lomas, J., Gat, Z. 1971. Methods in agrotopoclimatic surveys low temperatures. Agron. Rep. No 1, Israel Meteorological Service, Bet-Dagan.
-Madelin, M., Beltrando, G. 2005. Spatial interpolation – based mapping of the spring frost hazard in the Champagne vineyards. Meteorological applications, 12(1): 51-56.
-Mahmoudi, P. 2014. Mapping Statistical Characteristics of Frosts in Iran. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(2): 175-180.
-Nixon, P. R., Hales, T. A. 1975. Observing cold-night temperatures of agriculture landscapes with an airplane-mounted radiation thermometer. Journal of Applied Climatology, 14 (4): 498-505.  
-Noohi, K., Pedram, M., Sahraian, F., Kamali, G. A. 2007. Analysis of First Fall and Last Spring Advection and Radiation-Advection Frosts in Azerbaijan Provinces. Pajouhesh and Sazandegi, 20 (2): 78-85. [In Farsi]
-Richards, K. 2000. The topoclimate south project to map long-term growing degree-days in Southland, New Zealand. Presented at: SIRC 2000 – The 12th annual Colliquium of the Spatial Information Research Centre. University of Otago, New Zealand.
-Richards, K., Baumgarter, M. 2003. Towards topoclimate maps of frost and frost risk for southland, New Zealand. Presented at: SIRC 2003 – The 15th annual Colloquium of the Spatial Information Research Centre. University of Otago, New Zealand.
-Rosenberg, N. J., Myers, R. E.  1962. The nature of growing season frosts in and along the Platte Valley of Nebraska. Monthly weather review, 90 (11): 471-476.
-Schmidlin, T. W. 1986. Freeze-thaw days in the northeastern United States. Journal of Climate and Applied Meteorology, 26 (1): 142-155.
-Sutherland, R.A., Bartholic, J. F.  1974. Aircraft-mounted thermal scanner to determine grove temperatures during freeze conditions. Proc. Florida State Hort. Soc., 87: 65-69.
-Sutherland, R.A., Hannah, H. E., Cook, A. F., Martsolf, J. D.  1981. Remote sensing of thermal radiation from an aircraft- An analysis and evaluation of crop-freeze protection methods. J. Appl. Meteor., 20: 813-820.
-Suzuki, Y., Sato, S., Kawajiri, K. 1982. Frost damage and cold damage related to topographic climates in the warm region of Japan. Pt. 1, Distribution of Maximum air temperatures on the slopes of Ube-Ono tea garden, Yamaguchi. J. Agric. Meteor. 20: 813-820.
-Thom, H. C. S., Shaw, R. H. 1958. Climatological analysis of freeze data for Iowa. Monthly weather review, 86)7(: 251-257.
-Watkins, C. 1991. The annual period of freezing temperatures in central England: 1850-1989. International journal of climatology, 11)8(: 889-896.
-Waylen, P. R. 1988. Statistical analysis of freezing temperatures in central and southern Florida. International Journal of climatology, 8 (6): 607-628.
-Zinoni, F., Antolini, G., Campisi, T., Marletoo, V., Rossi, F. 2002. Characterizations of Emilia-Romagna region in relation with late frost risk. Physics and Chemistry of the Earth, 27: 1091-1101.