نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه شهر کرد

2 گروه مهندسی آب دانشگاه تبریز

چکیده

هدف این مطالعه بررسی روند تغییرات سرعت باد سطحی در ایران در دو مقیاس ماهانه و سالانه با روش ناپارامتری من کندال با چهار ویرایش متفاوت شامل الف) روش من کندال مرسوم (MK1)، ب) من کندال پس از حذف اثر ضریب خودهمبستگی مرتبه اول معنی­دار (MK2)، ج) من کندال پس از حذف اثر کامل ضرایب خودهمبستگی معنی­دار (MK3) و د) من کندال با لحاظ کردن ضریب هارست (MK4) می­باشد. داده­های مورد استفاده در این مطالعه شامل میانگین سرعت باد در دو مقیاس ماهانه و سالانه در دوره آماری 2005-1966 می­باشد. بدین منظور از اطلاعات 22 ایستگاه در سطح کشور ایران استفاده شد. برای تخمین شیب خط روند تغییرات سرعت باد، از روش ناپارامتری تخمین­گر سن استفاده شد. نتایج نشان داد که گر چه ترکیبی از روندهای مثبت و منفی در ایستگاه­های کشور برای میانگین سرعت باد در هر دو مقیاس سالانه و ماهانه تجربه شده است، ولی تعداد ایستگاه­های با روند منفی در مقایسه با تعداد ایستگاه­های با روند مثبت بیش­تر است. در مقیاس سالانه شدیدترین شیب خط روند منفی متعلق به ایستگاه فسا معادل 074/0- متر بر ثانیه در سال و شدیدترین شیب خط روند مثبت متعلق به ایستگاه زابل معادل 141/0 متر بر ثانیه در سال بود. در مقیاس ماهانه شدیدترین شیب خط روند منفی متعلق به ایستگاه فسا معادل 1/0- متر بر ثانیه در سال و شدیدترین شیب خط روند صعودی معادل 18/0 متر بر ثانیه در سال برای ایستگاه زابل مشاهده شده است. نتایج نشان داد که میانه شیب­های خط روند اکثر ایستگاه­های ایران در تمام ماه­های سال (بجز فوریه و نوامبر) منفی است. بنابراین، در حالت کلی می­توان نتیجه گرفت که در اکثر ایستگاه­های ایران روند سرعت باد در تمام ماه­های سال (بجز ماه­های فوریه و نوامبر) نزولی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of the Wind Speed Trend over Iran

نویسندگان [English]

  • Rasool Mirabbasi Najafabadi 1
  • yaghoob Dinpashoh 2

1 Water Engineering Group of the University

2 Department of Water Engineering University of Tabriz

چکیده [English]

The aim of this study is the analysis of surface wind speed in monthly and annual times scales in Iran using four different versions of the Mann-Kendall method: i) conventional Mann-Kendall method (MK1); ii) Mann-Kendall method following removing the effect of significant lag-1 auto-correlation (MK2); iii) Mann-Kendall method after the removing the effect of all significant auto-correlation coefficients (MK3); and Mann-Kendall method with considering the Hurst coefficient (MK4). Data used here are wind speed records in both monthly and annual time scales in the period of 1966-2005. For this purpose, 22 stations were selected across Iran’s area. Nonparametric Sen’s method was used for estimation of wind trend line slope. Results showed that although a combination of positive and negative trends observed both in monthly and annual time scales, however, the number of stations having the negative trends were more than that of the positive trends. In the annual time scale, the strongest negative trend line slope was -0.074 ms-1y-1 belonging to Fasa station, and the strongest positive trend line slope was 0.141 ms-1y-1 belonging to Zabol station. In monthly time scale, the strongest negative trend line slope was -0.1 ms-1y-1 observed in Fasa station and the the strongest positive trend line slope was 0.18 ms-1y-1 observed in Zabol station. Results showed that the median of the trend line slopes for all months (except February and November) was negative. Therefore, in general, it can be concluded that in the most of stations in Iran wind speed trend in all months (except February and November) was negative.

کلیدواژه‌ها [English]

  • Autocorrelation Coefficient
  • Hurst Coefficient
  • Iran
  • Trend
  • Wind speed
منابع
ـ خردادی، م.ج.، اسلامیان، س .س. و عابدی کوپایی، ج. (1386)، «بررسی روند پارامترهای هواشناسی در چند منطقه از ایران»، کارگاه فنی اثرات تغییر اقلیم در مدیریت منابع آب، 24 بهمن 1386.
ـ رحیم زاده، ف.، محمدیان، ن. و اکبری نژاد، س. ج. (1385)، «بررسی تغییرات سرعت باد در ارتفاع ده متری از سطح زمین»، مجله نیوار، شماره 62-63. ص 7-21.
ـ قهرمان، ن. و قره خانی، ا. (1389)، «بررسی روند تغییرات زمانی سرعت باد در گستره اقلیمی ایران»، مجله آبیاری و زهکشی ایران، 1 (4): 31-43.
- Abdul-Aziz, O.I. and Burn, D.H. (2006), “Trends and variability in the hydrological regime of the Mackenzie River basin”, Journal of Hydrology, 319(1-4): 282-294.
- Birsan, M.V., Molnar, P., Burlando, P., and Pfaundler, M. (2005), “Streamflow trends in Switzerland”, Journal of Hydrology, 314 (1-4): 312–329.
- Fu, G., Yu J., Zhang, Y., Hu, S., Ouyang, R., and Liu W. (2010), “Temporal variation of wind speed in China for 1961-2007”, Theor. Appl. Climatol., DOI 10.1007/s00704-010-0348-x.
- Hamed, K.H. (2008), “Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis”, Journal of Hydrology, 349: 350-363.
- Hamed, K.H. (2009), “Exact distribution of the Mann-Kendall trend test statistic for persistent data”, Journal of Hydrology, 365: 86-94.
- Hamed, K.H., and Rao, A.R. (1998), “A modified Mann–Kendall trend test for autocorrelated data”, Journal of Hydrology, 204: 182-196.
- Jhajharia, D., Shrivastava, S.K., Sarkar, D., Sarkar, S. (2009), “Temporal characteristics of pan evaporation trends under the humid conditions of northeast India”, Agric. For. Meteoro, 149: 763-779.
- Kendall, M.G. (1975), “Rank Correlation Measures”, Charles Griffin”, London.
- Klink, K. (2002), “Trends and interannual variability of wind speed distributions in Minnesota”, Journal of Climate, 15: 3311-3317.
- Kosutsoyiannis, D., (2003), “Climate change, the Hurst phenomenon, and hydrological statistics”, Hydrological Sciences Journal, 48(1): 3-24.
- Kull, A. (2005), “Relationship between inter-annual variation of wind direction and wind speed”, Publicationes Instituti Geographici Universitatis Tartuensis, 97: 62–70.
- Kumar, S., Merwade, V., Kam, J., and Thurner, K., (2009), “Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains”, Journal of Hydrology, 374(1-2): 171-183.
- Mann, H.B. (1945), “Non-parametric tests against trend”,. Econometrica, 13, MathSci Net, pp. 245-259.
- Mc Vivar, T., Van Niel, T.G., Li, L.T., Roderick, M.L., Rayner, D.P., Ricciardulli, L. and Donohue, R.J (2008), “Wind speed climatology and trends for Australia, 1975-2006: Capturing the stilling phenomenon and comparison with near surface reanalysis output”. Geophysical Research Letters, 35, L20403, doi: 1029/2008GL035627.
- Mostafaeipour, A., (2010), “Feasibility study of harnessing wind energy for turbin installation in province of Yazd in Iran”, Renewable & Sustainable Energy Reviews, 14(1): 93-111.
- Novotny, E.V., Stefan, H.G. (2007), “Stream flow in Minnesota: indicator of climate change”, Journal of Hydrology, 334 (3-4): 319-333.
- Pirazzoli, P.A. and Tomasin, A. (2003), “Recent near-surface wind changes in the central Mediterranean and Adriatic areas”, Int. J. Climatol., 23: 963-973.
- Sen, P.K. (1968), “Estimates of the regression coefficients based on Kendall’s Tau”, Journal of the American Statistical Association, 63: 1379-1389.
- Tuller, S.E. (2004), “Measured wind speed trends on the west coast of Canada”, Int. J. Climatol. 24: 1359-1374. DOI: 10.1002/joc.1073.
- Vautard, R., Cattiaux, J., Yiou, P., Thepaut, J-N., Ciais, P. (2010). “Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness”, Nature Geoscience Letters, DOI: 10.1038/NGE0979.
- Wan, H., Wang, X.L., Swail, V.R. (2010), “Homogenization and trend analysis of Canadian near-surface wind speeds”, Journal of Climate, 23: 1209-1225. DOI: 10.1175/2009JCLI3200.1.
- Yue, S., and Wang, C.Y. (2002), “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test”, Water Res. Res., 38 (6): 4-1_4-7.