نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه جغرافیا و برنامه ریزی شهری دانشکده جغرافیا و برنامه ریزی دانشگاه تبریز

2 گروه آموزشی فضای سبز دانشکده کشاورزی، دانشگاه تبریز

چکیده

توسعه پراکنده شهری و تغییرات کاربری اراضی پیرامونی شهرها، از چالش­های اساسی در برنامه­ریزی شهری در دهه­های اخیر بوده و مدل­سازی این تغییرات، به­عنوان یک ابزار کارآمد برای برنامه­ریزان، اقتصاددانان، اکولوژیست­ها و طرفداران محیط زیست جهت بررسی تغییرات آتی توسعه شهری محسوب می­گردد. این مقاله مدل تحول زمین را به­منظور بررسی توسعه شهری آتی تبریز، بر پایه شبکه­های عصبی مصنوعی و سیستم اطلاعات جغرافیایی مورد استفاده قرار داده است. روش تحقیق در این پژوهش، توصیفی–تحلیلی است و داده­های مورد نیاز از تصاویر ماهواره­ای، نقشه­های کاربری اراضی شهری و طرح­های مصوب شهری تبریز استخراج گردیده است، از نرم­افزارهای ERDAS imaging  و ArcGIS برای آماده­سازی داده­ها و تحلیل نتایج و مجموعه نرم­افزاری LTM برای آموزش، تست، شبیه­سازی و پیش­بینی توسعه احتمالی استفاده شده است. نتایج حاصل از یادگیری مدل بین سال­های 1368 تا 1384 نشانگر آن بوده است که در این مدت 16 ساله، 21469 سل 50 در 50 مترمربع توسعه یافته است که با توسعه واقعی شهر مطابقت داشته و نشانگر یادگیری مناسب در شبکه می­باشد. برای پیش­بینی توسعه احتمالی شهر طرح­های فرادست شهری، جمعیت سال 1400 و سرانه­های پیشنهادی برای شهر مورد استفاده قرار گرفت. نتایج نقشه توسعه احتمالی نمایانگر این است که 22484 سل، برای سال 1400 مورد نیاز می­باشد که بایستی برای توسعه آتی شهر اختصاص یابد. هم­چنین نتایج حاصل از مدل بیش­ترین توسعه شهر را در قسمت­های شمالغربی، شرق و جنوب شرق پیش­بینی کرده است که این روند تخریب فضاهای سبز، اراضی کشاورزی پیرامون و تهدید محیط زیست شهری را به­بار خواهد آورد. براین اساس و با ادامه روند کنونی، 8437 هکتار از فضاهای سبز و اراضی پیرامون شهر تبریز به زیرساخت و ساز خواهد رفت. ادامه روند توسعه پراکنده نه تنها تخریب محیط­های اطراف شهری را به­دنبال خواهد داشت، بلکه باعث گسیختگی فضایی و اجتماعی شهر و افزایش هزینه­های توسعه هم­چون راه­اندازی زیرساخت­های شهری خواهد شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An Analysis of Urban Land Use Changes in Tabriz using Land Transformation Model

نویسندگان [English]

  • Mir satar Sadrmosavi 1
  • Mohammadreza Pourmohammadi 1
  • Akbar Rahimi 2

1 Department of Geography and Urban Planning, School of Geography and Planning, University of Tabriz

2 Department of green spaces, Faculty of Agriculture, University of Tabriz

چکیده [English]

Urban sprawl and land use changes are one of the fundamental challenges facing urban planning in recent years. Therefore, modeling these changes is considered as an important tool by planners, economists, ecologists and environmentalists. This paper is an attempt to apply the Land Transformation Model (LTM) for urban land use changes in Tabriz based on artificial neural network and a geographical information system for the in prediction of Tabriz future development. Methodology in this paper is descriptive-analytic and the data are produced from satellite images, urban land use maps and approved plans for Tabriz. For preparation of data and analysis, ERDAS imaging and ArcGIS software, and for training test, simulation and the probable prediction map, LTM software are used. Results in training process, from 1989 to 2005 shows that 21469 cells (50*50 m) were expanded in 16 years period which is according to the real developed area in the same period and this result shows optimum training network. For prediction of probability map, we used Tabriz population and land use per capita was estimated in regional plan of Tabriz, and results illustrate 22484 cells changing until 2021 for future development. The results of the model, have predicted the most developed areas in the northwestern, east and south-east aspects and continuing this process would destroy green spaces, agricultural lands surrounding the city and threaten the environment. Thus, with this expansion, 8437 ha of green spaces and periphery areas will go on the built area.  Continued sprawl development not only will destroy urban environment in periphery areas, but it also will disrupt spaces in Tabriz and there by will increase urban development costs such as infrastructure services.

کلیدواژه‌ها [English]

  • Land transformation model
  • Sprawl growth
  • Land use Changes
  • Urban land
ـ پناهی جلودار، قربان (1379)، «تحلیلی بر روند شهرنشینی در مادر شهرهای ایران»، مورد نمونه شهر تبریز، رساله کارشناسی ارشد، دانشگاه تبریز.
-Alberti, M. (2005), “The effects of urban patterns on ecosystem function”. Int. Region. Sci. Rev. 28 (2), 168-192.
-Almeida, Cláudia Maria de, (2003), “Spatial dynamic modeling as a planning tool: Simulation of urban land use change in Bauru and Piracicaba (SP), Brazil”, A Thesis of the PhD Program in Remote Sensing, / C. M. Almeida. – São José dos Campos: INPE.
-Atkinson, P., & Tatnall, A. (1997), “Neural networks in remote sensing”, International Journal of Remote Sensing, 18(4), 699-709.
-Babaian, R., Miyashita, H., Evans, R., Eshenbach, A., &Ramimrez, E. (1997), “Early detection program for prostate cancer: results and identification of high-risk patient population”, Urology, 37(3), 193-197.
-Batty, M., P. Longley. (1994). “Fractal Cities: A Geometryof Form and Function”, (Academic Press, San Diego).
-Boutt, D.F., Hyndman, D.W., Pijanowski, B.C., & Long, D.T. (2001), “Identifying potential land use derived solute sources to streambaseflow using ground watermodel sand GIS”,. Groundwater, 39(1), 24-34.
-Bronstert, A., Niehoff, D., Bürger, G. (2002), “Effects of climate and land-use change on stormrunoff generation: present knowledge and modeling capabilities”, Hydrol.Process. 16, 509-529.
-Brown, D.G., Duh, J.D., &Drzyzga, S. (2000), “Estimating error in an analysis of forest fragmentation change using North American Landscape Characterization (NALC) Data”, Remote Sensing of Environment, 71, 106-117.
-Brown, D.G., Lusch, D.P., & Duda, K.A. (1998), “Supervised classification of glaciated landscape types using digital elevation data”, Geomorphology, 21(3-4), 233-250.
-Brown, D.G., Pijanowski, B.C., & Duh, J.D. (2001), “Modeling the relationships between land-use and land-cover on private lands in the Upper Midwest”, USA. Journal of Environmental Management, 59, 247-263.
-Cameron, I., Lyons, T.J., Kenworthy, J.R. (2004), “Trends in vehicle kilometres of travel in world cities, 1960-1990: underlying drivers and policy responses”m Transp. Policy 11, 287-298.
-Carlson, T.N. (2004), “Analysis and prediction of surface runoff in an urbanizing water-shed using satellite imagery”, J. Am. Water Resour, Assoc, 40 (4), 1087-1098.
-Drummond, S., Joshi, A., & Sudduth, K. (1998), “Application of neural networks: precision farming”, IEEE Transactions on Neural Networks, 211-215.
-Ewing, R., Pendall, R., Chen, D. (2002), “Measuring Sprawl and its Impact” Smart Growth America, Washington, D.C.
Fishman, M., Barr, Dean S., &Loick, W.J. (1991), “Using neural nets in market analysis”, Technical Analysis of Stocks & Commodities, 4, 18-21.
-Fukushima, K., Miyake, S., & Takayuki, G. (1983), “Neocognitron: a neural network model for a mechanism of visual pattern recognition, IEEE Transactions on Systems”, Man, and Cybernetics, SMC, 13(5), 826–834.
-Hasse, J., & Lathrop, R.G.A. (2003), “Housing-unit level approach to characterizing residential sprawl”, Photogrammetric Engineering & Remote Sensing, 69, 1021–1030.
-Kahn, M.E. (2000), “The environmental impact of suburbanization”, J. Policy Anal. Man- age. 19 (4), 569-586.
-Lee, D. (1974), “Requiem for large-scale models”, Journal of the American Institute of Planners, 39(3): 163-178.
-Li, L., Sato, Y., Zhu, H. (2002), “Simulating Spatial Urban Expansion Based on a PhysicaProcess,” Landscape and Urban Planning, Vol. 64, No. 1-2, 67-76.
-Matthews, R., Gilbert, N., Roach, A., Polhill, G., Gotts, N. (2007), “Agent-based land-use models: a review of applications”, Landscape Ecology 22, 1447-1459.
-McCuen, R.H. (2003), “Smart growth: hydrologic perspective”, J. Prof. Iss. Eng. Ed. Pr. 129 (3), 151-154.
-Pijanowski, B.C., Brown, D. G., Shellito, B.A., & Manik, G.A. (2002), “Using neural networks and GIS to forecast land use changes: a land transformation model,” Computers, Environment and Urban Systems, 26(6), 553e575.
-Pijanowski, B.C., S.H. Gage, D.T. Long & W. C. Cooper. (2000), “A Land Transformation Model: Integrating Policy, Socioeconomics and Environmental Drivers using a Geographic Information System”; In Landscape Ecology: A Top down Approach, Larry Harris and James Sanderson eds. 
-Pontius, R.G. (2002), “Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions”, Photogrammetric Engineering and Remote Sensing 68, 1041–1049.
-Ritter, N., Logan, T., & Bryant, N. (1988), “Integration of neural network technologies with geographic information systems”,. Proceedings of the GIS symposium: integrating technology and geoscience applications (pp. 102–103). Denver, Colorado. United States Geological Survey, Washington, DC.
-Skapura, D. (1996), “Building Neural Networks”, New York: ACMPress.
-Stow, D.A., & Chen, D.M. (2002), “Sensitivity of multi-temporal NOAA AVHRR data of an urbanizing region to land use/cover changes and misregistration”, Remote Sensing of Environment, 80, 297–307.
-Sullivan, W.C., Lovell, S.T. (2006), “Improving the visual quality of commercial development at the rural–urban fringe”, Landscape Urban Plan, 77, 152-166.
-Vakil-Baghmisheh, M.T. and Pavešic N. (2003), “A Fast simplified fuzzy ARTMAP network”, Neural Processing Letters, 17, 273.
-VanDaalen, C.E., Dresen, L., Janssen, M. (2002), “The roles of computer models in the environmental policy life cycle”, Environmental Science and Policy 5, 221–231.
-Verburg PH, de Nijs TCM, Ritsemavan Eck J, Visser H, de Jong K. (2004), “A method to analysesneighborhood characteristics of land use patterns”, Comput Environ Urban Syst 28: 667-690.
-Yuji, h. kazuhiko, t. and satoru, Q. (2005), “Urbanization linked with past agricultular land use patterns in the urban fring of deltaic asian mega-city: a case study in bonkok”, usa. Landscape and Urban Planning, vol 73, , 16-28
-Martinuzzi, S.,  William A., Olga, G., Gonzalez, M.R. (2007), “Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data”, Landscape and Urban Planning 79, 288–297.
-Kumar Jat, M., Garg P.K., Khare, D. (2008), “Monitoring and modeling of urban sprawl using remote sensing and GIS techniques”, International Journal of Applied Earth Observation and Geo information 10, 26-43.