نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 جغرافیای طبیعی (اقلیم شناسی) دانشگاه تبریز و عضو هیئت علمی مرکز تحقیقات حفاظت خاک و آبخیزداری

2 گروه جغرافیای طبیعی، دانشکده علوم انسانی و اجتماعی دانشگاه تبریز

3 گروه جغرافیای طبیعی دانشگاه تبریز

چکیده

تخمین خطر سیلاب یکی از مهم­ترین موضوعات مورد توجه کارشناسان و محققان علوم مختلف می‌باشد. مهم­ترین هدف تخمین ریسک سیلاب، پیش­بینی احتمال وقوع آن در آینده است. روش­های متعددی برای این کار وجود دارد که از مهم­ترین آنها می­توان به روابط بارش ـ رواناب و فرمول­های تجربی اشاره کرد. در هر یک از این روش­ها، بارش به عنوان مهم­ترین مؤلفه مؤثر در سیلاب شناخته می­شود. بنابراین شناخت دقیق مکانیسم توزیع زمانی و مکانی بارش می­تواند جهت مطالعه دقیق مکانیسم سیلاب بسیار مفید باشد. تحقیق حاضر به بررسی توزیع مکانی بارش در استان اصفهان می­پردازد. در بین آمار مشاهداتی ایستگاه­های ثبات تعداد 1654 رگبار با تداوم­های کمتر از یک ساعت تا 72 ساعت استخراج و مورد مطالعه قرار گرفت. با توجه به وسعت زیاد منطقه و عدم همگنی سطوح بارش، رگبارهای فراگیر کوتاه­تر از 24 ساعت در کل منطقه مشاهده نشد. لذا از رگبارهای فراگیر 24 ساعته برای استخراج رگبارهای کوتاه­مدت استفاده شد. در نهایت 7 رگبار فراگیر با تداوم 24 ساعته انتخاب و از این بین 3 رگبار شاخص که بیانگر حداکثر وقایع ثبت شده است، انتخاب و مورد مطالعه قرار گرفت. به منظور ترسیم منحنی­های همباران از روش­های رایج زمین آماری مانند کریجینگ، کوکریجینگ،IDW  و TPSS استفاده شده است. آزمون روش­های مختلف زمین آمار بیانگر دقت روش کریجینگ در غالب تداوم­های رگبار می­باشد. از بین روش­های کریجینگ نیز مدل گوسی و کروی نسبت به سایر مدل­ها ارجحیت دارد. بررسی گرادیان بارندگی نشان­دهندة رابطة ضعیف بارش و ارتفاع در اکثر تداوم­ها در منطقه است. روش کوکریجینگ که از متغیر کمکی ارتفاع استفاده می­کند دارای خطای بیشتری نسبت به روش کریجینگ است. در مجموع روش IDWنسبت به سایر روش­ها از خطای بیشتری برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Prepration and Assessment of Rainfall Depth-Area-Duration Curves in Esfahan Province

نویسندگان [English]

  • Masood Goodarzi 1
  • Saeed Jahanbakhsh Asl 2
  • Majid Rezaee Banafsheh 3

1 Physical geography (climatology) Faculty of Tabriz University and Research Centre Soil Conservation and Watershed

2 Department of Geography, Faculty of Humanities and Social Sciences University

3 Department of Geography, University of Tabriz

چکیده [English]

Flood risk estimation is one of the most important subjects for hydrologists and other scientists. The main objective of flood risk estimation is to study the past events in order to foresee the future flood risk. There are various methods for flood risk estimation. Rainfall- runoff and empirical equations are among the most used methods. In these methods, rainfall is the main parameter influencing flood mechanism. In this research, spatial distribution of rainfall pattern in Esfahan province is studied. Esfahan province with 10.5 million hectars of area has located in the central part of Iran with different topography, climate and ecological condition. Over 203 rain-guages located in the study area and its neibourhood were studied. The duration base of data record was 33 years. A total of 1654 storm events with less than 1 hour to 72 hours duration were considered, in which three index events, i.e. widespread and maximum events were used. The common methods of geostatistics, Krigging, Co-Krigging, IDW and TPSS were applied to interpolate the recorded points to non-observed ones. Among the studied interpolating methods, Krigging shows the best results, from which the Gussian and spherical models best fits to the observed points. In order to gain the best results, it is recommended to add the number of rainfall guage sites according to the World Meteorological Organization (WMO) standards. Also, we propose grouping the study area into homogeneous regions and studying DAD in each homogeneous region is advised.                

کلیدواژه‌ها [English]

  • Esfahan Province
  • Iran
  • Pervasive rainfall
  • Short duration rainfall events
  • Rainfall duration
  • Flood
  • Geostatistics
1ـ آقارضی، حشمت و داوودی­راد، علی­اکبر (1383) «ترسیم منحنی عمق ـ مساحت و تداوم بارش در استان مرکزی»، مجموعه خلاصه مقالات کنفرانس سراسری آبخیزداری و مدیریت منابع آب و خاک کرمان، صفحه 150.
2ـ احمدی، محمد (1378)، «تهیه منحنی­های عمق ـ سطح ـ تداوم بارش استان کرمانشاه»، گزارش نهایی طرح خاتمه یافته، مرکز تحقیقات حفاظت خاک و آبخیزداری.
3ـ زارع ارنانی، مـحمد (1377)، «تحلیل روابط عمق ـ سطح ـ تـداوم بارش در استان یزد»، پایان­نامه کارشناسی ارشد، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، 160 ص.
4ـ قنبرپور، محمدرضا (1377)، «مطالعه منطقه­ای نسبت بارندگی­های کوتاه­مدت به بارندگی حداکثر 24  ساعته در ایران (با تأکید بر مناطق اقلیمی کشور)»، پایان­نامه کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی دانشگاه تهران.
5ـ کریمی، مهدی (1366)، «آب و هوای منطقه مرکزی ایران»، انتشارات دانشگاه صنعتی اصفهان»، 87 ص.
6ـ  مرزبان، حسن؛ دشت­آبادی، مسعود (1382)، «تجزیه و تحلیل روابط عمق ـ سطح ـ تداوم بارش و رگبار حوضه آبریز زاینده­رود»، پایان­نامه کارشناسی ارشد آبیاری، دانشگاه شهرکرد. 
7ـ موسوی، علی­اکبر و علی­­اکبر داوودی راد (1378)، «شناخت عوامل مؤثر در خشکسالی هیدرولوژیک با استفاده از تـجزیه و تحلیل عاملی»، مـجموعه مقالات دومـین کنفرانس منطقه­ای تغییر اقلیم ـ 13 و 14 آبان 78 ـ تهران.
8- Bruce, J.P., Clark, R.H., (1966), “Introductionto Hydrometeorology”, Pergamon Press, Torento, Canada.
9- Collins, Belstad (1996), “A Comparison of Spatial Interpolation Techniques in Temperature Estimation”, In Third International Conference/Workshop on Integrating GIS and Environmental Modeling CD-ROM, NCGIA, NationalCenter for Geographic Information and Analysis, USA.
10- Dewberry, Sydney and Davis, (1996), “Land Development Handbook: Planning Engineering and Survey”, McGraw-Hill Company.
11- Donneaud, A.A., S.I. Niskov, D.L. Priegnitz, and P.L. Smith, (1984), “The Area-time Integral as an Indicator for Convective Rain Volumes”, J. Appl. Meteor., 23, 555-561.
12- Federick, Ralph H., Meyers, Vance A., Auciello, Eugene P., (1996), “Five to 60 Minute Precipitation Frequency for Eastern and Central United States”, NOAA Technical Memorandum NWS HYDRO-35, SILVER Spring, MD 6/77.
15- Huff, Floyd A., and James R. Angel, (1993), “Rainfall Frequency Atlas of the Midwest”, Bulletin 71, Midwestern Climate Center Research Report 92-03.
16- Kennoy Engineering, Inc., (1985), “Drainage Design Criteria and Procedures Manual”, Lexington-Fayette Urban CountyGovernment, 1/85.
17- Linsley, Jr., Ray K., Kohler, Max A., Paulhus, Joseph L.H., (1982), “Hydrology for Engineers”, McGraw-Hill Company.
18- Meys, Jessie, (1985), “Study KYP-56”, Updated Rainfall Intensity Duration Curves.
19- Metoffice. (2003), “Estimation of Probable Maximum Precipitation for Dam Design in Kenya”, Met Office Publications, Berkshire, UK.
20- Rees, G. and G.A. Cole. (1997), “Estimation of Renewable Water Resources in the European Union”, Commission of the European Communities: EUROSTAT, Final Report, 109 pp.
21- Rees, H.G., Croker. K.M., Reynard, N.S. and Gustard, A. (1997), “Estimation of Renewable Water Resources in the European Union”. Regional Hydrology: Concepts and Models for Sustainable Water Resource Management, IAHS, Publ, No. 246, P. 31-38.
22- Reich, B.M., (1963). “Short Duration Rainfall Intensity Estimates and Other Design aids for Regions of Spare Data”, J. Hydrol., 1: 3-28.
2- Williams, J.R., A.D. Nicks, and J.G. Arnold (1985), “Simulator for Water Resources in Rural Basins”, J. Hydr Engrg, 111(6), 970.
24- Yao, H. and Terakawa, A. (1999), “Distributed Hydrological Model for FujiRiver Basin”, J. Hydrologic Engineering, ASCE, Vol. 4, No. 4, P. 108-116.
25- Yao, H. and Hashino, M. (2000), “Analysis on Spatial Distribution of Annual Water Budget and Daily Runoff Along River Network in a Basin”, Annual Journal of Hydraulic Engineering, JSCE, Vol. 44, P. 289-294.