نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه علوم زمین ، دانشگاه تبریز.

2 دانشجوی کارشناسی ارشد هیدروژئولوژی

3 استاد گروه زمین‌شناسی، دانشگاه تبریز

2

چکیده

نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، به­دلیل عدم جریان سطحی دائمی برداشت بی­رویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتی­متر در سال شده است. هدف از این تحقیق پیش­بینی سطح آب زیرزمینی در این دشت با استفاده از روش­های هوش مصنوعی و زمین آمار می­باشد. در ابتدا با استفاده از روش خوشه­بندی مرتبه­ای (HCA)  پیزومترها دسته­بندی شدند. با انجام آنالیز حساسیت، داده­های ماهانه سطح آب، بارش و تبخیر هرکدام با یک تأخیر زمانی طی دوره 10 ساله (91-82) به­عنوان ورودی­های مدل انتخاب شدند. پس از نرمال­سازی داده­ها مدل­سازی با شبکه­های عصبی (ANNs) انجام شد. به منظور بررسی بیشتر شبیه­سازی با مدل فازی ساگنو (SFL) نیز انجام شد. برای مقایسه نتایج دو مدل شاخص­های آماری جذر میانگین مربعات خطا و ضریب تبیین به­کار گرفته شدند. با توجه به برتری مدل ANNs، مدل کریجینگ و کوکریجینگ عصبی برای پیش­بینی مکانی سطح ایستابی انتخاب شدند و پیش بینی مکانی با هر دو مدل انجام شد. نتایج نشان داد که  مدل کوکریجینگ با در نظر گرفتن پارامتر ثانویه توپوگرافی نسبت به مدل کریجینگ پیش­بینی دقیق­تری داشته است. براساس نتایج به­دست آمده با افزایش بازه زمانی پیش بینی خطای مدل ترکیبی (کوکریجینگ عصبی) افزایش می­یابد که بیش­تر به­دلیل افزایش خطای مدل شبکه عصبی مصنوعی با افزاییش بازه زمانی پیش­بینی می­باشد و خطای مدل زمین آمار ( کوکریجینگ) نامحسوس به­نظر می­رسد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Spatiotemporal Predicting of Groundwater Level Using Artificial Intelligence Models and Geostatistics Model (Case study: Duzduzan plain)

نویسندگان [English]

  • Ataollah Nadiri 1
  • Keyvan Naderi 2
  • Asghar Asghari Moghaddam 3
  • Mohammad Hasan Habibi 2

1 MSc Student.

2 Department of Earth sciences, Faculty of Science, University of Tabriz.

3 Professor.

چکیده [English]

No permanent surface water resources in many parts of the country resulted in overdraft of limited underground water resources. Duzduzan plain is one of the UromiaLake sub basins. In this area, indiscriminate harvesting of groundwater resources has caused an average decline of 76 centimeters per year. The purpose of this research is Groundwater level spatiotemporal predicting using Artificial intelligence models and Geostatistics model. To predict the groundwater level in the duzduzan plain, initially the piezometera in the plain were classified. The groundwater level in each piezometers category were introduced as output for each of AI models and input of these models include a evaporation and a precipitation and grounwater level of the considered piezometers with one time delay (t0-1), respectively. Ann's model and Sugeno fuzzy (SF) model applied to predict groundwater level. The resulted values of Groundwater level were evaluated by statistical measures, includes root mean square error and correlation coefficient. The obtained results showed ANNs model has better performance. Then the result of ANNs model, including two year monthly groundwater level prediction data in selected piezometers, were used as inputs of geostatistics model (Kriging and Co Kriging) for predating spatially ground water level in the study area. Obtained results showed Co Kriging model has better performance. 

کلیدواژه‌ها [English]

  • Artificial neural networks (ANNs)
  • Sugeno fuzzy logic model (SFL)
  • Water table fluctuations
  • Geostatistics model
  • Duzduzan plain
  • Kriging
  • Co Krigin
ـ اصغری مقدم، اصغر؛ نورانی، وحید و عطالله ندیری (1387)، « مدل­سازی بارش دشت تبریز با استفاده از شبکه­های عصبی مصنوعی»، مجلهدانشکشاورزیدانشگاهتبریز، شماره  1، سال 1387، صص 1-15.
ـ اصغری­مقدم، اصغر؛ نورانی، وحید و عطالله ندیری (1388)، «پیش­بینی زمانی و مکانی سطح آب­های زیرزمینی در محدوده متروی شهر تبریز با استفاده از مدل کریجینگ عصبی»،  مجله تحقیقات منابع آب ایران، شماره 1، سال 1389، صص 14- 24.
ـ فربودنام، نیما؛ قربانی، محمدعلی و محمدتقی اعلمی (1388)، «پیش­بینی جریان رودخانه با استفاده از برنامه­ریزی ژنتیک»، مجله دانش آب و خاک، شماره 1، سال 1389، صص 107-123.
ـ ندیری، عطاالله؛ اصغری­مقدم، اصغر؛ عبقری، هیراد و الهام فیجانی (b­1391)، «استفاده از مدل­های هوش مصنوعی مرکب در پیش­بینی قابلیت انتقال، مطالعه موردی دشت تسوج»، مجله تحقیقات منابع آب ایران،  شماره 63، سال 1392،  صص 61-74.
ـ ندیری، عطاالله (1386)، «پیش­بینیسطحآب­هایزیرزمینیتوسطمدلANNsدرمحدودهمترویشهرتبریز»، پایان­نامه کارشناسی ارشد، دانشکده علوم طبیعی، دانشگاه تبریز.
- Alvisi, S., Mascellani, G., Franchini, M., Bardossy, A., (2006), “Water level forecasting throuth Fuzzy logic and artificial neural network approaches”, Hydrology and Earth Sydtem Science, 10, 1-17.
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, (2000), “Artificial neural network in hydrology, part I and II”, Journal of Hydrological Engeneering. ASCE, 5, 115-137.
- Ayvaz, M.T., Karahan, H., Aral, M.M., (2007), “Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic”, Journal of Hydrology, 343, 240 – 253.
- Chiu, S., (1994), “Fuzzy model identification based on cluster estimation”, Journal of Intelligent and Fuzzy Systems, 2, 267–278.
- Coope, R.M., Istok, J.D., (1998), “Geostatistics applied to ground water contamination I: Mthodology”, Journal of Enviroment, 114, 270-286.
- Coulibaly, P., Anctil, F., Bobée, B., (2000), “Daily reservoir inflow forecasting using artificial neural networks with stopped training approach”, Journal of Hydrology, 230, 244-257.
- Daliakopoulos, N.I., Coulibaly, P., Tsanis, I.k., (2005), “Ground water level forecasting using artificial neural networks”, Journal of Hydrology, 309, 229-240.
- Desbarats, A.J., Logan, C.E., Hinton, M.J., Sharp, D.R., (2002), “On the kriging of water table elevation using collateral information from a digital elevation model”, Journal of Hydrology, 255, 25-38.
- Dunlap, L.E., Spinazola, J.M., (1984), “Interpolation water-table altitudes in west-central kanses using kriging techniques”, US Geological Survey Water-supply Paper, 2238, 19.
- French, M.N., Krajewski, W.F., Cuykendal, R.R., (1992), “Rainfall forecasting in space and time using a neural network”, Journal of Hydrology, 137, 1-37.
- Hoeksema, R.J., Clapp, R.B., Thomas, A.L., Hunley, A.E., Farrow, N.D., Dearstone, K.C., (1989),“Cokriging model for estimation of water table elevation”, Journal of Water Resource Research, 25, 429-438. 
- Isaaks, E.H., Srivastava, R.M., (1989), “Applied Geostatistics”, Oxford University press, 561.
- Jarrah, O.A., Halawani, A., (2001), “Recognition of gestures in Arabic sign language using neuro-fuzzy systems”, Artificial Intelligence, 133, 117–138.
- Kadkhodaie-Ilkhchi, A., Rezaee, M.R., Rahimpour-Bonab, H. (2009), “Committee neural network for prediction of normalized oil content from well log data: An example from South Pars GasField PersianGulf”, Journal of Petroleum Science and Engineerin, 65, 23-32.
- Lallahem, S., Mania, J., Hani, A., Najjar, Y., (2005), “On the use of neural networks to evaluate ground water levels in fractured media”, Juornal of Hydrology, 307, 92-111.
- Maier H.R., Dandy G.C., (2000), “Neural network for the prediction and forecasting water resources variables: a review of modeling issues and applications”, Environmental Modeling Software, 15, 101-124.
- Nikravesh, M., Aminzadeh, F., (2003), “Soft Computing and Intelligent Data Analysis in Oil Exploration Part1: Introduction: Fundamentals of Soft Computing”, Elsevier, Berkeley, USA, 744.
- Samani, N., Gohari-Moghadam, M., Safavi, A.A., (2007), “A simple neural network model for the determination of aquifer parameters”, Journal of Hydrology, 340, 1-11.
- Tayfur, G., Nadiri, A.A., Moghaddam, A.A., (2014), “Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation”, Water Resources Management, 28, 1173-1184.
- Rizzo, D.M., Dougherty, D.E., (1994), “Characterization of aquifer properties using artificial nueral network: nueral kriging”, Water Resource Research, 30, 438-497.
- Yu, P.S., Chen, C.J., Chen, S.J., (2000), “[Aplication of gray and fuzzy method for rainfal forecasting”, Journal of Hydrological Engineering, ASCE, 5, 339–345.