نوع مقاله : مقاله علمی پژوهشی
نویسندگان
1 استادیار گروه علوم زمین ، دانشگاه تبریز.
2 دانشجوی کارشناسی ارشد هیدروژئولوژی
3 استاد گروه زمینشناسی، دانشگاه تبریز
چکیده
نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، بهدلیل عدم جریان سطحی دائمی برداشت بیرویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتیمتر در سال شده است. هدف از این تحقیق پیشبینی سطح آب زیرزمینی در این دشت با استفاده از روشهای هوش مصنوعی و زمین آمار میباشد. در ابتدا با استفاده از روش خوشهبندی مرتبهای (HCA) پیزومترها دستهبندی شدند. با انجام آنالیز حساسیت، دادههای ماهانه سطح آب، بارش و تبخیر هرکدام با یک تأخیر زمانی طی دوره 10 ساله (91-82) بهعنوان ورودیهای مدل انتخاب شدند. پس از نرمالسازی دادهها مدلسازی با شبکههای عصبی (ANNs) انجام شد. به منظور بررسی بیشتر شبیهسازی با مدل فازی ساگنو (SFL) نیز انجام شد. برای مقایسه نتایج دو مدل شاخصهای آماری جذر میانگین مربعات خطا و ضریب تبیین بهکار گرفته شدند. با توجه به برتری مدل ANNs، مدل کریجینگ و کوکریجینگ عصبی برای پیشبینی مکانی سطح ایستابی انتخاب شدند و پیش بینی مکانی با هر دو مدل انجام شد. نتایج نشان داد که مدل کوکریجینگ با در نظر گرفتن پارامتر ثانویه توپوگرافی نسبت به مدل کریجینگ پیشبینی دقیقتری داشته است. براساس نتایج بهدست آمده با افزایش بازه زمانی پیش بینی خطای مدل ترکیبی (کوکریجینگ عصبی) افزایش مییابد که بیشتر بهدلیل افزایش خطای مدل شبکه عصبی مصنوعی با افزاییش بازه زمانی پیشبینی میباشد و خطای مدل زمین آمار ( کوکریجینگ) نامحسوس بهنظر میرسد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Spatiotemporal Predicting of Groundwater Level Using Artificial Intelligence Models and Geostatistics Model (Case study: Duzduzan plain)
نویسندگان [English]
- Ataollah Nadiri 1
- Keyvan Naderi 2
- Asghar Asghari Moghaddam 3
- Mohammad Hasan Habibi 2
1 MSc Student.
2 Department of Earth sciences, Faculty of Science, University of Tabriz.
3 Professor.
چکیده [English]
No permanent surface water resources in many parts of the country resulted in overdraft of limited underground water resources. Duzduzan plain is one of the UromiaLake sub basins. In this area, indiscriminate harvesting of groundwater resources has caused an average decline of 76 centimeters per year. The purpose of this research is Groundwater level spatiotemporal predicting using Artificial intelligence models and Geostatistics model. To predict the groundwater level in the duzduzan plain, initially the piezometera in the plain were classified. The groundwater level in each piezometers category were introduced as output for each of AI models and input of these models include a evaporation and a precipitation and grounwater level of the considered piezometers with one time delay (t0-1), respectively. Ann's model and Sugeno fuzzy (SF) model applied to predict groundwater level. The resulted values of Groundwater level were evaluated by statistical measures, includes root mean square error and correlation coefficient. The obtained results showed ANNs model has better performance. Then the result of ANNs model, including two year monthly groundwater level prediction data in selected piezometers, were used as inputs of geostatistics model (Kriging and Co Kriging) for predating spatially ground water level in the study area. Obtained results showed Co Kriging model has better performance.
کلیدواژهها [English]
- Artificial neural networks (ANNs)
- Sugeno fuzzy logic model (SFL)
- Water table fluctuations
- Geostatistics model
- Duzduzan plain
- Kriging
- Co Krigin