نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی دانشگاه تبریز

2 دانشگاه شهید بهشتی

3 جغرافیایی طبیعی ژئومورفولوژی

چکیده

محققان علم ژئومورفولوژی رودخانه همواره در پی روش­های جدیدی برای بررسی ژئومورفولوژی رودخانه­ای و تغییرات الگوی مسیر رودخانه­ها می­باشند، هندسه فراکتال یکی از روش­های جدیدی است که می­تواند در علم ژئومورفولوژی رودخانه­ای به کار گرفته شود. اهمیت اصلی هندسه فراکتال در این است که مـدل و تـوصیفی ریاضی بـرای بسیاری از اشکال پیچـیده که در طبیعت یافت می­شوند ارائه می­کند. هدف این تحقیق تحلیل فراکتالی مسیر رودخانه قزل اوزن و تغییرات صورت گرفته حدفاصل میانه تا زنجان می­باشد، بدین منظور از تصاویر ماهواره­ای ETM+ و IRS در سه دوره زمانی 2007 و 2004، 2000 استفاده شد، جهت تحلیل فراکتالی مسیر مورد مطالعه به سه بازه تقسیم گردید که هر بازه به لحاض خصوصیات مورفولوژیکی از بازه دیگری متفاوت می­باشد. برای تعیین بعد فراکتالی از روش بعد شمارش خانه استفاده شد. نتایج این تحقیق نشان داد که بازه اول (بازه شریانی) بیشترین میزان تغییرات در سال­های مورد بررسی را داشته و بازه دوم (بازه کوهستانی) کمترین میزان تغییرات را داشته است و بازه سوم (بازه نیمه­کوهستانی) حالت بینابنی داشته است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Gezel Ozan River Pattern Changes by Fractal Geometry

نویسندگان [English]

  • Mohammad hossein Rezayee Moghadam 1
  • Mohammad reza Servati 2
  • Sayyad Asghari Serkanrood 3

1 Department of Geography, University of Tabriz

2 Shahid Beheshti University

3 The natural geography geomorphology

چکیده [English]

Researchers of river Geomorphology science are seeking new ways to check River Geomorphology and its pattern changes always. Fractal geometry is one of the new methods that can be used in Geomorphology of river science. The main importance of fractal geometry is presentation of the model and mathematical description for complex shapes that in nature can provide. The goal of this research is Fractal analysis of GezelOzanRiver changes between routes of Miyaneh to Zanjan. For this purpose was used satellite images of periods 2000, 2004 Sensor ETM + and 2007 sensor IRS. For Fractal analysis the studied route was divided into three periods that each period is different in terms of morphological characteristics. For determine of fractal dimensions was used from box-counting method. The survey results showed that the first interval (interval arterial) has had the highest changes and the second range (Mid-range Mountain) has had the lowest changes and third period (mountain range) has had an intermediate case.

کلیدواژه‌ها [English]

  • تغییرات رودخانه
  • الگوی هندسی
  • هندسه فراکتال
  • رودخانه قزل اوزن
1ـ بریچ، جان، اس (1387) «رودخانه­ها و دشت­های سیلابی»، ترجمه محمدحسن رضایی مقدم و مهدی ثقفی، انتشارات سمت.
2ـ رسـولی، علی­اکـبر (1387)، «مبانیسنجشازدورکاربـردیباتأکیدبرپردازشتصاویرماهواره­ای»، انتشارات دانشگاه تبریز، چاپ اول.
3ـ عبدی، پ (1385)، «ارزیابی عملکرد آبشکن­های احداثی بر روی رودخانه­ها در استان زنجان»، هفتمین کنگره بین­المللی مهندسی عمران.
4ـ نیکویی، احسان؛ حیدری، مهدی؛ طالب بیدختی، ناصر و حکمت­زاده، علی­اکبر (1387)، «هندسه فراکتالی در مهندسی رودخانه: ایده­ها»، مفاهیم اساسی و دستاوردها، چهارمین کنگره مهندسی عمران، دانشگاه تهران، اردیبهشت 1387.
5- Allen, M., Brown, G.J., Miles, N.J., (1995), “Measurement of Boundary Fractal Dimensions: Review of Current Techniques”, Powder Technology, 84(1) pp 1-14.
6- Beauvais, A., Montgomery, D.R., (1996), “Influence of Valley Type on the Scaling Properties of River Plan Forms”, Water Resour, Res. 32, pp 1441-1448.
7- Buczkowski, S., Hildgen P., Cartilier, L., (1998), “Measurement of Fractal Dimension by Box-Counting a Critical Aanalysis of Data Scatter”, Physica A 252(1), pp 23-34.
8- Cook, R.U. and Doornkamp, J.C. (1990), “Geomorphology in Environment Management”, Second Edition, Clarendon Press, Oxford.  Pp. 100-105
9- De Bartolo, S.G., Veltri. M. and Primavera, L. (2006), “Estimated Generalized Dimensions of River Network”, Journal of Hydrology, 322 pp 181-191.
10- Ede J. Ijjasz-Vasquez, Rafael L. Bras, Ignacio Rodriguez-Iturbe (1994), “Self-affine Scaling of Fractal River Courses and Basin Boundaries”, Physica A: Statistical and Theoretical Physics, Volume 209, Issues 3-4, 1, Pp 288-300
11- Frankhauser P., )2004(, “Comparing the Morphology of urban Patterns in Europe: a Fractal Approach”, European Cities - Insights on outskirts, A. Borsdorf and P. Zembri (Eds), Report COST Action 10 Urban Civil Engineering, Vol. 2 "Structures", Brussels, 79-105.
12- Friend, P.F. and Sinha, R., (1993), “Bariding and meandering Parameters”, In: Braided Rivers, Edited by: Best, J.L. and Bristow, C.S., The Geological Society, London, No. 75, Pp.105-111.
13- Grassberger, P., (1983), “On efficient Box Counting Slgorithms”, Int. J. Mod. Phys. C 4, 515-523.
14- Klinkenberg, B. (1994), “A Review of Methods Used to Determine the Fractal Dimensions of Linear Features”, Mathematical Geology, Vol 26(1). Pp 23-46.
15- La Barbera. P. and Ross, R. (1989), “On the Fractal Dimension of Stream Networks”, Water Resources Research, 25(4) pp 735-741.
16- Liebovitch, L.S., Tibor, T., (1989), “A Fast Algorithm to Determine Fractal Dimensions by Box-Counting”, Physics Letters A 141(8/9) pp 386-390.
17- Nikora, V., Sapozhinov, V.B., Noever, D.A., (1993), “Fractal Geometry of IndividualRiver Channels and its Computer Simulation”, Water Resour. Res. 29, pp: 3561-3568.
18- Rasouli, A.A. (2007), “Modeling of UrmiaLake Coastal Change by Appling an Integrated RS/GIS Approach”, GIS for the Coastal Zone; A Selection of Papers from CoastGIS 2006, University of Wollongong: 13-16 July 2006, Australia.
19- Roach, D.E., Fowler, A.D., (1993), “Dimensionality Analysis of Patterns: Fractal Measurements”, Computer & Geosciences, 19 (26), pp 849-869.
20- Shang P. and kamae S. (2005), “Fractal Nature of Time Series in the Sediment Transport Phenomenon”, Chaos Solitions & Fractals 26, pp 997-1007.
21- Shen, X.H, L.J. Zou, G.F. Zhang, N. Su, W.Y. Wu, S.F. Yang (2011), “Fractal Characteristics of the Main Channel of Yellow River and Its Relation to Regional Tectonic Evolution”, Geomorphology, 127 pp 64-70.
22- Shen, X.H., Zou, L.J., Li, H.S., (2002), “Successive Shift box-counting Method for Calculating Fractal Dimension and Its Application in Identification of Fault”, Acta Geol, Sin.-Engl. 76, pp 257-263.
23- Snow, R.S., (1989), “Fractal Sinuosity of Stream Channels”, Pure Appl. Geophys, 131, 99-109.
24- Stevan H. Strogatz (1994), “Nonlinear Dynamics and Chaos (with Applications to Physics”, Biology, Chemistry, and Engineering), Persuse Books, Reading, Massachustts, P 505.
25- Tarboton, D.G., (1996). “FractalRiver Networks, Horton's Laws and Tokunaga Cyclicity”, J. Hydrol, 187, pp 105-117.
26- Thomas I., Frankhauser P. and Badariotti D. (2007), “Comparing the Fractality of European urban Districts: Do National Processes Matter?” Paper Presented at ERSA Meeting in Paris and at ECTQG Meeting in Montreux, It Is Internet Doc and Is No Page Number.
27- Thomas I., Tannier C., Frankhauser P. (2008), “Is There a Link between Fractal Dimensions and other Indicators of the Built-up Environment at a Regional Level”, Cybergeo: European Journal of Geography, 413, 24 p.
28- Turcotte, D.L., (1992), “Fractal and Chaos in Geology and Geophysics”, GeophysicsCombridgeUniversity Press, Combridge, P 121.
29- Winarso, G.M. and Budhiman, S. (2001), “The Potential Application of Remote Sensing Data for Coastal Study”, 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore.