نوع مقاله : مقاله علمی پژوهشی

نویسنده

گروه عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد مراغه

چکیده

پژوهش حاضر با هدف تحلیل حساسیت پاراهای موثر بر میزان تبخیر به ارزیابی پاراهای هواشناسی روزانه شامل میانگین دما، رطوبت نسبی، سرعت باد، ساعات آفتابی، میزان تشعشع و فشار سطح ایستگاه سینوپتیک تبریز در دوره آماری 5 ساله (1386 الی 1390) پرداخته است. به این منظور در ابتدا به کمک شبکه عصبی مصنوعی وزن­دار، مدلی برای تخمین میزان تبخیر توسعه داده شد. سپس به کمک ماتریس وزنی حاصل از بهترین معماری شبکه، از الگوریتم گارسن برای تحلیل حساسیت و تعیین اهمیت نسبی پاراهای ورودی استفاده گردید. نتایج حاصل نشان داد که میانگین دما و رطوبت نسبی بیش­ترین تأثیر و ساعات آفتابی، میزان تشعشع، سرعت بادو فشار سطح ایستگاه کین تأثیر را بر روی میزان تبخیر از تشت شهر تبریز دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Sensitivity Analysis of the Effective Parameters upon Daily Evaporation Using Garson Equation and Artificial Neural Network (Case Study:Tabriz city)

نویسنده [English]

  • Rasool Daneshfaraz

Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Maragheh Branch

چکیده [English]

This study performs a sensitivity analysis to evaluatethe meteorological parametersthat affect daily pan evaporation rate. To this end, five meteorological parameters namely, daily mean temperature, relative humidity, sunshine hours, solar radiation, wind speed and pressure for period of 1386 to 1390 were used at the Tabriz City, Iran. At first, the pan evaporation rate was estimated using Artificial Neural Network (ANN) and the best structure of the ANN was distinguished. Then, weight matrix of selected structure of the network along with the Garson algorithm were used for sensitivity analysis of the input parameters and determine relative importance of the input parameters. The results indicated that the daily mean temperature and relative humidityare the most effective variables. However, the sunshine hours, solar radiation, wind speed and pressure have less effect on the evaporation rate at the Tabriz station.

کلیدواژه‌ها [English]

  • Garson algorithm
  • ANN
  • Sensitivity analysis
  • Evaporation
  • Tabriz city
ـ دهقانی، امیراحمد؛ پیری، مهدی؛ حسام، موسی؛ دهقانی، نوید (1389)، «تخمین تبخیر روزانه از تشت تبخیر با استفاده از سه شبکه عصبی پرسپترون چند لایه، تابع پایه شعاعی و المانی»، مجله پژوهش­های حفاظت آب و خاک، شماره دوم، جلد هفدهم، صص67-49.
ـ قربانی، محمدعلی، نقی پور، لیلا، کریمی، وحید، فرهودی، رضا (1392)، «آنالیز حساسیت پاراهای مؤثر بر غلظت ازن با استفاده از شبکه عصبی مصنوعی»، مجله سلامت و محیط، دوره ششم، شماره اول، صص 22-11.
-Irmak, S., Haman, D.Z. and Jones, J.W., (2002), “Evaluation of class A pance coefficients forestimating reference evapotranspiration in humidlocation”, Journal of Irrigation and Drain. Eng. ASCE, 128. pp: 153-159.
-Khanna, T., (1990), “Foundation of neural networks: Addison-Wesley Series in New Horizons in Technology”, 1sted. New York: Addison-Wesley”,
- Dayhoff, J.E. (1990) “Neural Network Principles”, 1sted. New York: Prentice-Hall International.
- Sudheer, K.P., Gosain, A.K., Mohana, R.D. and Saheb, S.M., (2002), “Modelling Evaporation Using an Artificial Neural Network Algorithm”, Hydrological Processes, 16, pp:3189-3202.
-Terzi, O. and Keskin, M.E., (2005), “Modeling of Daily Pan Evaporation”, Journal of Applied Sciences, 5, pp: 368-372.
-Kalteh, A.M., (2008), “Rainfall-Runoff Using Artificial Neural Networks (ANNs) and Understanding”, Caspian Journal of Environmental Science, 6(1), pp: 53-58.
-Najah, A.A., El-Shafie, A., Karim, O.A., and Jaafar, O., (2011), “Integrated versus isolated scenario forprediction dissolved oxygen atprogression of water quality monitoringstations”, Hydrology and Earth System Sciences Discussions, 8, pp: 6069-6112.
-Ghorbani, M.A., Khatibi, R., Hosseini, B., and Bilgili, M., (2013), “Relative importance of parameters affecting windspeed prediction using artificial neural networks”, Theoretical and Applied Climatology, 114, pp: 107–114.
-Haykin, S., “Neural Networks: A Comprehensive Foundation”, Second Ed. Prentice Hall, Upper Saddle River, New Jersey, (1999).
-Garson, G.D., (1991), “Interpreting neural network connection weights”, Artificial Intelligence Expert. 6, pp:47-51.
-Tang, Z. and Fishwick, P.A., (1993), “Feedforward neural nets as models for time 2 series forecasting”, ORSA J Comput, 5, pp: 374–385.
14- Wong, F.S., (1991). “Time series forecasting using back propagation neural network”, Neurocomputing; 2, 147–159.
-Lippmann, RP., (1987), “An introduction to computing with neural nets”, IEEE ASSP Magazine; April, pp: 4–22.