نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه سیستم‌های اطلاعات مکانی و عضو قطب علمی مهندسی فناوری اطلاعات مکانی، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

2 کارشناس ارشد سیستم‌های اطلاعات مکانی، دانشکده مهندسی نقشه‌برداری، دانشگاه‌صنعتی خواجه نصیرالدین طوسی، تهران

3 استادیارگروه سیستم‌های اطلاعات مکانی، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

4 عضو هیات علمی گروه مهندسی عمران-نقشه برداری، دانشکده فنی و مهندسی، دانشگاه بجنورد، خراسان شمالی، بجنورد

2

چکیده

رشد سریع و نامتوازن جمعیت بخصوص در کشورهای در حال توسعه، مشکلات فراوانی را در زمینه­های زیست محیطی، اقتصادی و اجتماعی ایجاد کرده است. این مسئله اهمیت مدل­سازی تغییرات کاربری اراضی را برای مدیریت بهتر شهرها بیش از پیش مطرح می­نماید. مدل اتوماسیون سلولی به­طور گسترده در مدل­سازی تغییرات مکانی-زمانی گسترش شهرها مورد استفاده قرار گرفته است. مقاله­ حاضر به ارائه مدل اتوماسیون ترکیبی با منطق فازی پرداخته است. در روش­­های متداول اتوماسیون سلولی یا همان CA، حالت، وضعیت و قوانین انتقال به­صورت قطعی تعریف می­شوند در حالی­که بیان قطعی این اجزا، نیازمند داده­های بسیار زیاد است. حال این­که دسترسی به داده­های دقیق، به­دلیل گستردگی و حجم بالای معیارهای مؤثر در مدل­سازی فرآیند توسعه شهری، کار ساده­ای نیست. از این­رو نظریه فازی به­دلیل پشتیبانی از عدم قطعیت و قابلیت توصیف واژگان طبیعی می­تواند در بیان اجزای CA استفاده گردد. مدل پیشنهادی به­منظور مدل­سازی گسترش شهر شیراز بین سال­های 1383 تا 1388 استفاده شده و سپس نتایج مورد ارزیابی قرار گرفته است. مقایسه­ نتایج این تحقیق با تصاویر ماهواره­ای، حاکی از دقت 80 درصدی برای روش پیشنهادی می­باشد، این در حالی است که برای روش اتوماسیون سلولی معمول دقت 75 درصد گزارش شده است. نتایج تحقیق، گامی به سمت جلو می­باشد، زیرا مدل پیشنهادی با افزایش قابلیت اتوماسیون سلولی در مدل­سازی پروسه­های پیچیده مکانی به دقت مطلوب­تری نیز دست پیدا کرده است. نتایج حاصل از این مدل­سازی می­تواند به­عنوان ابزاری مناسب جهت اخذ تصمیم­های بهینه در اختیار برنامه­ریزان شهری قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling Urban Development Using Fuzzy-Cellular Automata

نویسندگان [English]

  • Mohammad Taleai 1
  • Meysam Aghamohammadi 2
  • Mohammad Karimi 3
  • Ghasem Javadi 4

1 Associate Professor in Faculty of Geodesy & Geomatics, K.N.Toosi University of Technology, Tehran, Iran.

2 M.S degree of Geographical information systems (GIS), faculty of Geodesy & Geomatics, K.N.Toosi University of Technology, Tehran, Iran.

3 Assistance Professor in Faculty of Geodesy & Geomatics, K.N.Toosi University of Technology, Tehran, Iran

4 Faculty Member of Geomatics Eng., University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran.

چکیده [English]

Rapid, irregular and unbalanced growth of the world population during past years, particularly in developing countries, have been caused many problems in the areas of environmental, economic, social and cultural for urban planners. These situations request new methods and tools to model and predict urban future changes. Due to simple and dynamic structure and utilizing spatial characteristics, Cellular Automation (CA) model widely uses in spatial-temporal modeling problems such as urban extension. This paper develops a Fuzzy-CA method to model urban extension. In conventional CA method, state and position of pixels and transition rules are defined certainly. The definitive expression of components of the complex processes needs a large amount of data. However in most cases accurate data are not available. As a result, integration of CA method and fuzzy theory would be useful to model urban extension. In this paper a Fuzzy-CA method is developed and tested in Shiraz city between the years 2004 to 2009. The results of the proposed method show 80% accuracy in comparison to real data have been captured from satellite images. However, an accuracy of 75% has been reported for this case study with utilizing conventional cellular automation.

کلیدواژه‌ها [English]

  • urban development
  • Geographic information systems
  • Cellular Automata
  • Fuzzy logic
  • Transition Rules
  • Shiraz City
- ربانی، امیر (1390)، «مدل­سازی گسترش شهری با بهره­گیری از مدل خودکاره­ی ترکیبی و روش بهینه­سازی توده ذرات»، نشریه علمی-پژوهشی علوم و فنون نقشه برداری، دوره اول شماره 3، صفحات 39- 46.
-  سروستانی، مهدی (1388)، «بررسی روند رشد شهر شیراز و تاثیر آن بر فضای سبز طی سه دهه گذشته»، مجموعه مقالات همایش ژئوماتیک سازمان نقشه برداری کشور، تهران، ایران.
- مرادی، مریم (1390)، «مدل­سازی توسعه­ سکونتگاه­های شهری با استفاده از اتوماتای سلولی فازی»، پایان­نامه کارشناسی ارشد، دانشکده مهندسی نقشه­برداری، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران.
- مرکز آمار ایران، سالنامه آماری (1390)، سالنامه آماری استان فارس.
- ملکی، داود (1389)، «مدل­سازی توسعه شهری با استفاده از روش اتوماتای سلولی»، پایان­نامه کارشناسی ارشد، دانشکده مهندسی نقشه­برداری، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران.
- Al_Ahmadi, K., See, L. (2009), “Calibration of a fuzzy Cellular Automata model of urban dynamics in Saudi Arabia”, Ecological Complexity, 6(2), PP. 80-101.
- Al_Kheder, SH., Jun Wang, Jie Shan. (2006), “Fuzzy cellular Automata Approach for Urban Growth Modeling”, American Society for Photogrammetry and Remote Sensing Annual Conference, Reno, Nevada.
- Bandini, S., Worsch, T. (2001), “Theoretical and Practical Issues on Cellular Automata, Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry, PP 108– 116.
- Dietzel, R. (2004), “Spatial differences in multi-resolution urban automata modeling, Transactions in GIS, Vol. 8, PP 479–92.
- Engelen, G. (1993), “Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use”, Environment and Planning A, Vol. 25, Pp. 1175–99.
- Karimia M., Sharifib M.A., Mesgaria M.S. (2012), “Modeling land use interaction using linguistic variables”, International Journal of Applied Earth Observation and Geoinformation, Vol. 16, PP. 42–53.
- Kocabas, V., Dragicevic, S., (2006), “Assessing Cellular Automata model behaviour using a sensitivity analysis approach, Computers”, Environment, and Urban Systems, Vol. 30(6), Pp. 921–953.
- Liu, Y., S.R. Phinn (2003), “Modeling urban development with cellular automata incorporating fuzzy-set approaches, Computers”, Environment and Urban Systems, Vol. 27(6), PP. 637-658.
- Malczewski, J. (2006), “Ordered Weighted Averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis, International Journal of Applied Earth Observation and Geoinformation, Vol. 8, PP. 270–277.
- Menard, J. (2005), “Exploration of spatial scale sensitivity in geographic cellular automata”, Environment and Planning, B, Vol. 32, Pp. 693–714.
- Openshaw, S. (1998), “Neural network, genetic, and fuzzy logic models of spatial interaction”, Environment and Planning, A, Vol. 30(10), PP. 1857-1872.
- Qingsheng Yang, Xia Li, Xun Shi (2008), “Cellular Automata for simulating land use changes based on support vector machines”, Computers & Geosciences, Vol. 34, PP. 592–602.
- Riccioli, F., Toufic El Asmar & Jean-Pierre El Asmar & Roberto Fratini (2013), “Use of cellular automata in the study of variables involved in land use changes”, Environ Monit Assess, Vol. 185, PP. 5361–5374.
- Stevens, S. (2007), “A GIS-based irregular cellular automata model of landuse change”, Environment and Planning B: Planning and Design, Vol. 34, PP. 708–24.
- Veldkamp, A., Kok, K. (2001), “Evaluating impact of spatial scales on land use pattern analysis in Central America, Agriculture”, Ecosystems and Environment, Vol. 85, PP. 205-221.
- Verburg PH, De Nijs TCM, Van Ritsema Eck J, Visser H, De Jong K. (2004), “A method to analysis neighborhood characteristics of land use patterns”, Computers Environment Urban Systems, Vol. 28, PP. 667–690.
- White, R., Engelen, G. (1997), “Cellular automata as the basis of integrated dynamic regional modeling”, Environment and Planning, Vol. 24(2), PP. 235-246.
- Wu, F. (1996), “A linguistic cellular automata simulation approach for sustainable land development in a fast growing region”, Computers Environment and Urban Systems, Vol. 20, PP. 367–87.
- Yongjiu, F. (2011), “Modeling dynamic urban growth using Cellular Automata and particle swarm optimization rules”, International Journal of Landscape and Urban Planning, Vol. 102(3), PP. 188-196.